Toggle light / dark theme

We’re exploring the frontiers of AGI, prioritizing readiness, proactive risk assessment, and collaboration with the wider AI community.

Artificial general intelligence (AGI), AI that’s at least as capable as humans at most cognitive tasks, could be here within the coming years.

Integrated with agentic capabilities, AGI could supercharge AI to understand, reason, plan, and execute actions autonomously. Such technological advancement will provide society with invaluable tools to address critical global challenges, including drug discovery, economic growth and climate change.

A recently discovered inflammatory disease known as VEXAS syndrome is more common, variable, and dangerous than previously understood, according to results of a retrospective observational study of a large health care system database. The findings, published in JAMA, found that it struck 1 in 4,269 men over the age of 50 in a largely White population and caused a wide variety of symptoms.

“The disease is quite severe,” study lead author David Beck, MD, PhD, of the department of medicine at NYU Langone Health, said in an interview. Patients with the condition “have a variety of clinical symptoms affecting different parts of the body and are being managed by different medical specialties.”

Dr. Beck and colleagues first described VEXAS (vacuoles, E1-ubiquitin-activating enzyme, X-linked, autoinflammatory, somatic) syndrome in 2020. They linked it to mutations in the UBA1 (ubiquitin-like modifier activating enzyme 1) gene. The enzyme initiates a process that identifies misfolded proteins as targets for degradation.

Did you know that the camera sensor in your smartphone could help unlock the secrets of antimatter? The AEgIS collaboration, led by Professor Christoph Hugenschmidt’s team from the research neutron source FRM II at the Technical University of Munich (TUM), has developed a detector using modified mobile camera sensors to image, in real time, the points where antimatter annihilates with matter.

This new device, described in a paper published in Science Advances, can pinpoint antiproton annihilations with a resolution of about 0.6 micrometers, a 35-fold improvement over previous real-time methods.

AEgIS and other experiments at CERN’s Antimatter Factory, such as ALPHA and GBAR, are on a mission to measure the free-fall of antihydrogen within Earth’s gravitational field with high precision, each using a different technique. AEgIS’s approach involves producing a horizontal beam of antihydrogen and measuring its vertical displacement using a device called a moiré deflectometer that reveals tiny deviations in motion and a detector that records the antihydrogen annihilation points.

People living in Bronze Age-era Denmark may have been able to travel to Norway directly over the open sea, according to a study published in PLOS One by Boel Bengtsson from the University of Gothenburg, Sweden, and colleagues. To complete this study, the research team developed a new computer modeling tool that could help other scientists better understand how ancient peoples traversed the sea.

The Bronze Age cultures of what are now northern Denmark and southwestern Norway are quite alike, with similar artifacts, burial systems, and architecture. Cultural exchange between the two regions was likely made possible by vessels traveling along the coastlines of Scandinavia, following a 700-kilometer route across Denmark, up the coast of Sweden and back down to southwestern Norway.

However, the researchers of this new paper suggest, the cultural similarities between these two regions invite speculation that ancient people may also have traveled directly between the two sites—over more than 100 kilometers of open ocean.

Using the Transiting Exoplanet Survey Satellite (TESS), an international team of astronomers has detected a new warm Jupiter exoplanet located more than 1,000 light years away. The newfound alien world, designated TOI-2005 b, is about the size of Jupiter and orbits its host star on a highly eccentric orbit. The discovery was reported March 25 on the arXiv pre-print server.

NASA’s TESS is conducting a survey of about 200,000 of the brightest stars near the sun with the aim of searching for transiting exoplanets. So far, it has identified over 7,500 candidate exoplanets (TESS Objects of Interest, or TOI), of which 620 have been confirmed so far.

Located some 1,070 light years away from the Earth, TOI-2005 is a rapidly rotating F-type star. It has recently been monitored with TESS and a transit signal was detected in its light curve. Now, a group of astronomers led by Allyson Bieryla of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts, reports that this transit signal is of planetary nature.

Organoids have revolutionized science and medicine, providing platforms for disease modeling, drug testing, and understanding developmental processes. While not exact replicas of human organs, they offer significant insights.

The Siegert group at the Institute of Science and Technology Austria (ISTA) presents a new model that reveals details of the developing nervous system’s response to viral infections, such as Rubella. This model could influence pharmaceutical testing, particularly benefiting drug safety for pregnant women.

Microglia are special cells in the human brain. Like a diligent ranger overseeing a forest and dealing with infestations and wildfires, scan the brain environment for germs and initiate an anti-inflammatory response to remove them. They also monitor the quantity of neurons () and their connections to ensure optimal brain function in adulthood.

Nearly 16 million American adults have been diagnosed with attention deficit hyperactivity disorder (ADHD), but evidence suggests that more than 30% of them don’t respond well to stimulant medications like Ritalin and Adderall.

A new clinical trial provides a surprising explanation for why this may be the case: There are in how our are wired, including the chemical circuits responsible for memory and concentration, according to a new study co-led by the University of Maryland School of Medicine (UMSOM) and performed at the National Institutes of Health (NIH) Clinical Center.

Our brain cells have different types of chemical receptors that work together to produce optimal performance of brain function. Differences in the balance of these receptors can help explain who is likely to benefit from Ritalin and other stimulant medications. That is the finding of the new research published in the Proceedings of the National Academy of Sciences.

In a recent study, researchers gained new insight into the lives of bacteria that survive by grouping together as if they were a multicellular organism. The organisms in the study are the only bacteria known to do this in this way, and studying them could help astrobiologists explain important steps in the evolution of life on Earth.

The work is published in the journal PLOS Biology.

The organisms in the study are known as multicellular magnetotactic bacteria (MMB). Being magnetotactic means that MMB are part of a select group of bacteria that orient their movement based on Earth’s magnetic field using tiny “compass needles” in their cells. As if that weren’t special enough, MMB also live bunched up in collections of cells that are considered by some scientists to exhibit “obligate” multicellularity, the trait on which the new study is focused.

Physicists at TU Dortmund University have periodically driven a time crystal and discovered a remarkable variety of nonlinear dynamic phenomena, ranging from perfect synchronization to chaotic behavior within a single semiconductor structure. The team has now published its latest findings in the journal Nature Communications.

For their current research, Dr. Alex Greilich’s team from the Department of Physics utilized a highly robust time crystal, previously introduced in Nature Physics last year. The crystal, made of , was continuously illuminated with a laser during the initial experiment. This interaction caused a nuclear spin polarization, which in turn spontaneously generated oscillations, embodying the essence of a time crystal through periodic behavior under constant excitation.

In the newly published follow-up study, the team explored the dynamic phases of the time crystal. They illuminated the semiconductor periodically instead of continuously, while also varying the frequency of the periodic drive. The observed behavior of the time crystal, its , ranged from perfect to chaotic dynamics.