Toggle light / dark theme

Last year we introduced Project Astra, our research prototype of a universal AI assistant. Since then we’ve improved memory, added computer control and enhanced voice output, and are working to bring these new capabilities to Gemini Live and other products.

Learn more about Project Astra: https://deepmind.google/technologies/.… #AIAssistant #ProjectAstra Subscribe to our Channel: / google Find us on X: / google Watch us on TikTok: / google Follow us on Instagram: / google Join us on Facebook: / google.

#GoogleIO #AIAssistant #ProjectAstra.

Find us on X: / google.
Watch us on TikTok: / google.
Follow us on Instagram: / google.
Join us on Facebook: / google.

Swabs from China’s Tiangong space station reveal traces of a bacterium unseen on Earth, with characteristics that may help it function under stressful environmental conditions hundreds of kilometers above the planet’s surface.

Naming their discovery after the station, researchers from the Shenzhou Space Biotechnology Group and the Beijing Institute of Spacecraft System Engineering say the study of Niallia tiangongensis and similar species could be “essential” in protecting astronaut health and spacecraft functionality over long missions.

The swabs were taken from a cabin on board the space station in May 2023 by the Shenzhou-15 crew as part of one of two surveys by the China Space Station Habitation Area Microbiome Programme.

The orbital angular momentum of electrons has long been considered a minor physical phenomenon, suppressed in most crystals and largely overlooked. Scientists at Forschungszentrum Jülich have now discovered that in certain materials it is not only preserved but can even be actively controlled. This is due to a property of the crystal structure called chirality, which also influences many other processes in nature.

The discovery has the potential to lead to a new class of electronic components capable of transmitting information with exceptional robustness and energy efficiency.

From electronics to spintronics, and now to orbitronics: In classical electronics, it is primarily the charge of the electron that counts. In modern approaches such as and spintronics, the focus has shifted to the electron’s spin.

Tracking exoplanets via orbital mechanics isn’t easy. Plenty of variables could affect how a planet moves around its star, and determining which ones affect any given exoplanet requires a lot of data and a lot of modeling. A recent paper from researchers led by Kaviya Parthasarathy from National Tsing Hua University in Taiwan tries to break through the noise and determine what is causing the Transit Timing Variations (TTVs) of HAT-P-12b, more commonly known as Puli.

Puli is a “sub-Saturn” exoplanet that orbits the star HAT-P-12, also known as Komondor. Both the star and its planet are named after dog breeds as they reside in the constellation Canes Venatici and lie about 463 light years away from Earth. Nothing is particularly special about the star or the planet, except that they have had a lot of data collected on them.

The paper analyzed 46 light curves watching Puli traverse in front of Komondor. Some were previously published, whereas others, including some ground-based observations and some new data from the Transiting Exoplanet Survey Satellite, were never before analyzed.