Toggle light / dark theme

This Deep Dive AI podcast discusses my book The Physics of Time: D-Theory of Time & Temporal Mechanics, an insightful exploration into one of the most profound mysteries of existence: the nature of time. As part of the Science and Philosophy of Information series, this book presents a radical reinterpretation of time grounded in modern physics and digital philosophy. It questions whether time is a fundamental aspect of reality or an emergent property of consciousness and information processing. Drawing on quantum physics, cosmology, and consciousness studies, this work invites readers (and listeners) to reimagine time not as a linear, absolute entity, but as a dynamic, editable dimension intertwined with the fabric of reality itself. It challenges traditional views, blending scientific inquiry with metaphysical insights, aimed at both the curious mind and the philosophical seeker.

#PhysicofTime #TemporalMechanics #DTheory #consciousness #DigitalPresentism #TimeFlow #EmergentTime #TimeTravel #ArrowofTime #SyntellectHypothesis


In this episode, we dive deep into The Physics of Time: D-Theory of Time & Temporal Mechanics by futurist-philosopher Alex M. Vikoulov. Explore the profound questions at the intersection of consciousness, quantum and digital physics, and the true nature of time. Is time fundamental or emergent? Can we travel through it? What is Digital Presentism?

The Physics of Time: D-Theory of Time & Temporal Mechanics by Alex M. Vikoulov is an insightful exploration into one of the most profound mysteries of existence: the nature of time. As part of the Science and Philosophy of Information series, this book presents a radical reinterpretation of time grounded in modern physics and digital philosophy. It questions whether time is a fundamental aspect of reality or an emergent property of consciousness and information processing.

The book introduces the D-Theory of Time, or Digital Presentism, which suggests that all moments exist as discrete, informational states, and that our perception of time’s flow is a mental construct. Vikoulov explores theoretical models of time travel, the feasibility of manipulating time, and the concept of the Temporal Singularity, a proposed point where temporal mechanics may reach a transformative threshold.

Reducing high blood pressure substantially lowers the risk of dementia and cognitive impairment without dementia, according to the results of a phase 3 clinical trial involving almost 34,000 patients, published in Nature Medicine. These findings highlight the potential importance of widespread adoption of more intensive blood pressure control among patients with hypertension to reduce the global disease burden of dementia.

It is estimated that the global number of people with dementia will rise from 57.4 million in 2019 to 152.8 million by 2050, with the greatest impact being in low-to middle-income countries. Previous research suggests that , such as eating a healthy diet and exercising regularly, could be the most effective way to reduce the growing global incidence of dementia.

Research has also found that people with untreated hypertension have a 42% greater risk of developing dementia in their lifetime than healthy study participants. However, only a few randomized controlled trials have tested the effect of medications that reduce blood pressure on the risk of dementia, and none have looked at it as a primary trial endpoint.

Astronomers using the NASA/ESA/CSA James Webb Space Telescope have discovered evidence that suggests the presence of a long-sought supermassive black hole at the heart of the nearby spiral galaxy Messier 83 (M83). This surprising finding, made possible by Webb’s Mid-Infrared Instrument (MIRI), reveals highly ionized neon gas that could be a telltale signature of an active galactic nucleus (AGN), a growing black hole at the center of a galaxy.

M83, also known as the Southern Pinwheel galaxy, has long been an enigma. While massive spiral galaxies often host AGNs, astronomers have struggled for decades to confirm one in M83. Previous observations hinted that if a existed there, it must be dormant or hidden behind thick dust. Now, Webb’s unprecedented sensitivity and have unveiled signs that suggest otherwise.

“Our discovery of highly ionized neon emission in the nucleus of M83 was unexpected,” said Svea Hernandez, lead author of the new study with AURA for the European Space Agency at the Space Telescope Science Institute in Baltimore, U.S. “These signatures require large amounts of energy to be produced—more than what normal stars can generate. This strongly suggests the presence of an AGN that has been elusive until now.”

Researchers at MIT have developed a noninvasive medical monitoring device powerful enough to detect single cells within blood vessels, yet small enough to wear like a wristwatch. One important aspect of this wearable device is that it can enable continuous monitoring of circulating cells in the human body. The technology was reported in npj Biosensing.

The device—named CircTrek—was developed by researchers in the Nano-Cybernetic Biotrek research group, led by Deblina Sarkar, assistant professor at MIT and AT&T Career Development Chair at the MIT Media Lab. This technology could greatly facilitate early diagnosis of disease, detection of disease relapse, assessment of infection risk, and determination of whether a disease treatment is working, among other medical processes.

Whereas traditional blood tests are like a snapshot of a patient’s condition, CircTrek was designed to present real-time assessment, referred to in the npj Biosensing paper as having been “an unmet goal to date.” A different technology that offers monitoring of cells in the bloodstream with some continuity, in vivo flow cytometry, “requires a room-sized microscope, and patients need to be there for a long time,” says Kyuho Jang, a Ph.D. student in Sarkar’s lab.

Artificial intelligence (AI) shows tremendous promise for analyzing vast medical imaging datasets and identifying patterns that may be missed by human observers. AI-assisted interpretation of brain scans may help improve care for children with brain tumors called gliomas, which are typically treatable but vary in risk of recurrence.

Investigators from Mass General Brigham and collaborators at Boston Children’s Hospital and Dana-Farber/Boston Children’s Cancer and Blood Disorders Center trained deep learning algorithms to analyze sequential, post-treatment brain scans and flag patients at risk of cancer recurrence.

Their results are published in NEJM AI.

Irritable bowel syndrome, chronic itching, asthma and migraine are in many cases hard-to-treat conditions. They have in common that they are triggered by an excessive immune response—which in severe cases can be life-threatening.

A team of researchers led by the University of Bonn has now identified a promising bioactive compound that could effectively reduce symptoms and slash fatality risk. The compound blocks a receptor on certain defense cells, thus preventing a derailed immune response. The study findings have been published in the journal Signal Transduction and Targeted Therapy.

If you have ever been bitten by a mosquito, you will know how annoying the resulting itching can be. This is in large part due to mast cells— found in the skin and that are full of inflammatory messengers. When a person is bitten, antibodies bind to substances in the mosquito’s saliva, and this complex can activate the mast cells, which then release their payload all at once. This leads to the symptoms of redness, swelling and itching, which usually subside after a short while, or even quicker, using the right ointment.