Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Elon’s Cryptic Post Sparks Big Questions

Questions to inspire discussion.

🌐 Q: What distinguishes embedded AI from language models like ChatGPT? A: Embedded AI interacts with the real world, while LLMs (Large Language Models) primarily answer questions based on trained information.

Chip Production and Supply.

💻 Q: What are Samsung’s plans for chip production in Texas? A: Samsung’s new Texas chip plant will produce 2nm chips with 16,000 wafers/month by the end of 2024, boosted by a $16B Tesla deal.

🔧 Q: How will the Samsung-Tesla deal impact Tesla’s chip supply? A: The deal will significantly boost Tesla’s chip supply, producing 17,000 wafers per month of 2 nanometer chips reserved solely for Tesla.

AI Infrastructure and Applications.

Elon Musk Pushes Tesla Forward

Questions to inspire discussion.

📷 Q: What camera technology does the Optimus bot use? A: Optimus uses car cameras with macro modes for reading small text, supplied by Simco (a Samsung division), featuring a miniaturized camera assembly with internal movement mechanisms.

Tesla AI and Chip Development.

🧠 Q: How does Tesla’s AI5 chip compare to competitors? A: The AI5 chip is potentially the best inference chip for models under 250 billion parameters, offering the lowest cost, best performance per watt, and is milliseconds faster than competitors.

💻 Q: What advantages does Tesla have in chip development? A: Tesla controls the chip design, silicon talent, and has vertical integration, giving them a significant edge over competitors in AI chip development.

Tesla Product and Business Updates.

Michio Kaku: This could finally solve Einstein’s unfinished equation | Full Interview

“An equation, perhaps no more than one inch long, that would allow us to, quote, ‘Read the mind of God.’”

Up next, Michio Kaku: The Universe in a Nutshell (Full Presentation) ► • Michio Kaku: The Universe in a Nutshell (F…

What if everything we know about computing is on the verge of collapsing? Physicist Michio Kaku explores the next wave that could render traditional tech obsolete: Quantum computing.

Quantum computers, Kaku argues, could unlock the secrets of life itself: and could allow us to finally advance Albert Einstein’s quest for a theory of everything.

00:00:00 Quantum computing and Michio’s book Quantum Supremacy00:01:19 Einstein’s unfinished theory.
00:03:45 String theory as the \.

Space travel may accelerate the aging of stem cells as much as tenfold, study says

In fact, they age “ten times faster in space than on the ground,” said Dr. Catriona Jamieson, the director of the Sanford Stem Cell Institute at the University of California, San Diego, a lead author of the study.

Stem cells are special cells that can develop into various kinds of tissue. Stem cell aging is potentially worrisome because it diminishes the body’s natural ability to repair its tissues and organs, potentially leading to chronic, age-related conditions like cancer, neurodegenerative diseases and heart problems.

Satiation variability prediction using AI for obesity treatment

Meal size and termination is regulated by a process called satiation, which varies widely among adults with obesity.

The researchers assessed calories to satiation (CTS) and integrated a machine learning genetic risk score (CTSGRS) to predict obesity treatment outcomes.

High CTS or CTSGRS identified individuals who responded better to phentermine-topiramate, whereas low CTS or CTSGRS predicted greater weight loss with liraglutide, highlighting personalized obesity therapy.

Squishy ‘smart cartilage’ could target arthritis pain as soon as flareups begin

Researchers have developed a material that can sense tiny changes within the body, such as during an arthritis flareup, and release drugs exactly where and when they are needed.

The squishy material can be loaded with that are released in response to small changes in pH in the body. During an flareup, a joint becomes inflamed and slightly more acidic than the surrounding tissue.

The material, developed by researchers at the University of Cambridge, has been designed to respond to this natural change in pH. As acidity increases, the material becomes softer and more jelly-like, triggering the release of drug molecules that can be encapsulated within its structure. Since the material is designed to respond only within a narrow pH range, the team says that drugs could be released precisely where and when they are needed, potentially reducing side effects.

The Hofstadter butterfly: Twisted bilayer graphene reveals two distinct strongly interacting topological phases

Magic-angle twisted bilayer graphene (MATBG) is a material created by stacking two sheets of graphene onto each other, with a small twist angle of about 1.1°. At this “magic angle,” electrons move very slowly, which can lead to the emergence of highly correlated electron states.

Due to its unique properties and characteristics, MATBG has become the focus of numerous studies rooted in physics and materials science. Some physicists discovered that when an is applied to MATBG, the flat energy bands in the material transform into a fractal-like energy pattern known as a Hofstadter spectrum.

Researchers at University of Washington, Florida State University and other institutes recently carried out a study aimed at further investigating the emergence of these energy patterns in ultraclean MATBG.

How evolution explains autism rates in humans

A paper in Molecular Biology and Evolution finds that the relatively high rate of autism-spectrum disorders in humans is likely due to how humans evolved in the past. The paper is titled “A general principle of neuronal evolution reveals a human accelerated neuron type potentially underlying the high prevalence of autism in humans.”

/* */