Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Solar-powered photoelectrochemical system converts nitrate in wastewater into high-value ammonia

A research team affiliated with UNIST has unveiled a technology that transforms nitrates found in wastewater into ammonia, a vital chemical and promising energy carrier, without carbon emissions. This advancement not only offers a sustainable method for ammonia production but also contributes to wastewater purification efforts.

Identifying a compass in the human brain

Zhengang Lu and Russell Epstein, from the University of Pennsylvania, led a study to explore how people maintain their sense of direction while navigating naturalistic, virtual reality cities.

As reported in their JNeurosci paper, the researchers collected neuroimaging data while 15 participants performed a taxi-driving task in a virtual reality city. Two represented a forward-facing direction as people moved around. This was consistent across variations of the city with different visual features.

The signal was also consistent across different phases of the task (i.e., picking up a passenger versus driving a passenger to their drop-off location) and various locations in the city. Additional analyses suggest that these brain regions represent a broad range of facing directions by keeping track of direction relative to the north–south axis of the environment.

How the brain follows an internal rhythm

“This suggests that theta-phase locking is a general phenomenon of the human memory system, but does not alone determine successful recall,” says the corresponding author.

While most nerve cells always fired at the same oscillation time, some nerve cells interestingly changed their preferred timing between learning and remembering. “This supports the theory that our brain can separate learning and retrieval processes within a brain wave, similar to members of an orchestra who start playing at different times in a piece of music,” says the author.


A research team has gained new insights into the brain processes involved in encoding and retrieving new memory content. The study is based on measurements of individual nerve cells in people with epilepsy and shows how they follow an internal rhythm. The work has now been published in the journal Nature Communications.

“Similar to members of an orchestra who follow a common beat, the activity of nerve cells appears to be linked to electrical oscillations in the brain, occurring one to ten times per second. The cells prefer to fire at specific times within these brain waves, a phenomenon known as theta-phase locking,” says the first author.

The research team found that the interaction between nerve cells and brain waves is active in both the learning and remembering of new information – specifically in the medial temporal lobe, a central area for human memory. However, in the study on spatial memory, the strength of theta-phase locking of nerve cells during memory formation was independent of whether the test subjects were later able to correctly recall the memory content.

Inside Beijing’s Crisis Tanks, Fear and a Nation on Edge

Inside Beijing’s Crisis: Tanks, Fear, and a Nation on Edge reveals the shocking truth behind China’s escalating turmoil in 2025. From military convoys flooding the capital to social unrest, epidemics, and economic collapse, discover how Beijing has become the symbol of a nation on the brink.

#chinanews #chinacrisis #chinadisasters

MXene as a frame for 2D water films shows new properties

Water still has unknown sides. When water is forced into two dimensions by enclosing it in appropriate materials, new properties, phase transitions, and structures emerge. MXenes as a class of materials offer a unique platform for exploring these types of phenomena. MXenes consist of transition metal carbides and nitrides with a layered structure whose surfaces can help them absorb water easily. The water forms an extremely thin film between the individual layers.

A team led by Dr. Tristan Petit, HZB, and Yury Gogotsi, Drexel University, has investigated a series of MXene samples containing enclosed water and different ions at BESSY II using various analytical methods. The work is published in the journal Nature Communications.

X-ray revealed the formation of amorphous ice clusters in the enclosed water, which increases the distance between the MXene layers. The previously metallic MXene film then becomes a semiconductor.

First-Of-Its-Kind Cell Transplant Brings a Cure For Diabetes Closer

A patient with type 1 diabetes has begun producing his own insulin after receiving a transplant of pancreatic cells.

For the first time in humans, these islet cells have been genetically edited so they wouldn’t be rejected by the patient, removing the need for immunosuppressant drugs.

Type 1 diabetes usually begins when the immune system mistakenly attacks the islet cells in the pancreas, which are responsible for producing insulin. The condition is usually managed with a careful diet and regular insulin injections, but an emerging treatment involves replacing the damaged islet cells with functional ones.

/* */