In 2023, physicist Xiaodong Xu at the University of Washington —working with researchers from Cornell and Shanghai Jiao Tong University —found that twisting atom-thin layers of molybdenum ditelluride into a special pattern called a moiré lattice could produce the fractional quantum anomalous Hall effect without magnets. This was a huge leap, because magnets can disrupt superconducting materials used in quantum technology.
Xu’s team discovered two such magnet-free fractional states. That alone was remarkable. But Zhu and his colleagues suspected there were more waiting to be found. The secret lies in the moiré pattern. When the layers are slightly rotated relative to each other, they form a honeycomb-like grid at the atomic scale.
This structure changes the way electrons move, encouraging them to team up in unusual ways that create fractional charges. In other words, the twist turns the material into a playground for exotic quantum phases.