Toggle light / dark theme

“We have found a key to controlling the switching on and off of proteins by combining photochemistry and hydrolysis,” says KTH researcher Tove Kivijärvi.

When designing materials that aim to improve medicine, you need to be able to control the functions of the material in a very precise way. If this is achieved, cell environments similar to the human body can be created in the lab, which is important for understanding biological mechanisms, disease processes and how the body repairs itself. Biological materials can also be used to study how drugs work and to streamline drug testing and preclinical studies.

Contact: Cara Martinez | Email: [email protected]

Los Angeles — April 14, 2015 – An injection of stem cells into the eye may soon slow or reverse the effects of early-stage age-related macular degeneration, according to new research from scientists at Cedars-Sinai. Currently, there is no treatment that slows the progression of the disease, which is the leading cause of vision loss in people over 65.

“This is the first study to show preservation of vision after a single injection of induced neural progenitor stem cells into a AMD-like rat model for retinal degeneration,” said Shaomei Wang, MD, PhD, lead author of the study published in the journal STEM CELLS and a research scientist in the Eye Program at the Cedars-Sinai Board of Governors Regenerative Medicine Institute.

Glioblastoma (GBM) is a highly aggressive and malignant brain tumor with a poor prognosis. Treatment options are limited, and the development of effective therapeutics is a major challenge. Here are some current and emerging therapeutic strategies for GBM:

Current Therapies 1. Surgery: Surgical resection is the primary treatment for GBM, aiming to remove as much of the tumor as possible. 2. Radiation Therapy: Radiation therapy is used to kill remaining tumor cells after surgery. 3. Temozolomide (TMZ): TMZ is a chemotherapy drug that is used to treat GBM, often in combination with radiation therapy. 4. Bevacizumab (Avastin): Bevacizumab is a monoclonal antibody that targets vascular endothelial growth factor (VEGF) to inhibit angiogenesis.

Emerging Therapies 1. Immunotherapy: Immunotherapies, such as checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors) and cancer vaccines, aim to stimulate the immune system to attack GBM cells. 2. Targeted Therapies: Targeted therapies focus on specific molecular pathways involved in GBM, such as the PI3K/AKT/mTOR pathway. 3. Gene Therapy: Gene therapies aim to introduce genes that can help kill GBM cells or inhibit tumor growth. 4. Oncolytic Viruses: Oncolytic viruses are engineered to selectively infect and kill GBM cells. 5. CAR-T Cell Therapy: CAR-T cell therapy involves genetically modifying T cells to recognize and attack GBM cells. 6. Small Molecule Inhibitors: Small molecule inhibitors target specific proteins involved in GBM, such as EGFR, PDGFR, and BRAF.

Organelles in cells were originally often independent cells, which were incorporated by host cells and lost their independence in the course of evolution. A team of biologists headed by Professor Dr. Eva Nowack at Heinrich Heine University Düsseldorf (HHU) are examining the way in which this assimilation process occurs and how quickly. They now describe their findings about an intermediate stage in this process in Science Advances.

Eukaryotic cells contain a large number of functional sub-units, so-called organelles. They perform important functions within the cell. Some organelles were independent, at some point in the past. They were then taken up by a cell and have evolved over time in symbiosis with the .

These “endosymbionts” lost their ability to function autonomously in the process. One well-known example of this type of is the mitochondrion, which evolved from a bacterium.

John Archibald Wheeler was one of the most daring thinkers in twentieth-century physics, famed for his deep insights into quantum mechanics, general relativity, and the nature of information. In his classic essay on “It from Bit,” Wheeler proposed that at the heart of reality lies a fundamentally informational thread. This means that rather than starting with “things” — material objects with an independent existence — one might instead begin with “bits,” the discrete units of information that become “real” only when observed. Within this sweeping vision, the observer plays a crucial role in bringing the universe into a definite existence, and information takes center stage in shaping the very character of physical phenomena.

In broad strokes, Wheeler’s idea of “It from Bit” emerges from the curious interplay between the quantum world and classical objects. At the core of quantum mechanics is the principle that measuring or observing something at the microscopic scale affects its state. According to the standard interpretation, a system in a so-called superposition will “collapse” into a particular outcome when measured. Wheeler’s bold claim was that this phenomenon illuminates a more general fact: that information, not matter, might be the building block of reality. Thus, any physical “it” — an electron, a planet, or even the entire cosmos — ultimately grows from answers to yes/no questions (bits), shaped by acts of measurement. Put more simply, Wheeler wanted us to see the world as not built out of little billiard-ball-like atoms existing in some absolute manner, but out of meaningful acts of observation that yield discrete bits of data.

Behind this elegant concept lies a deep philosophical backdrop. Wheeler urged us to ponder how the universe came to be what it is, and why. If we trace everything back to an early cosmos, we arrive at a place where only quantum possibilities existed — no fixed table of facts and objects. Gradually, so his argument goes, as the universe evolved and observers emerged, questions got asked, measurements were made, bits of information accumulated, and reality “crystallized.” This leap from quantum weirdness to classical solidity thus becomes a grand puzzle about information. Rather than letting classical physics occupy center stage from the beginning, Wheeler reversed the script: quantum possibilities plus acts of observation define and generate the classical world we experience. In this sense, the cosmic stage is incomplete without the audience, and reality only stabilizes by virtue of these repeated question-and-answer interactions.

A recent study evaluating garnet-type solid electrolytes for lithium metal batteries finds that their expected energy density advantages may be overstated. The research reveals that an all-solid-state lithium metal battery (ASSLMB) using lithium lanthanum zirconium oxide (LLZO) would achieve a gravimetric energy density of only 272 Wh/kg, a marginal increase over the 250–270 Wh/kg offered by current lithium-ion batteries.

Given the high production costs and manufacturing challenges associated with LLZO, the findings suggest that composite or quasi-solid-state electrolytes may be more viable alternatives. The work is published in the journal Energy Storage Materials.

“All-solid-state lithium metal batteries have been viewed as the future of energy storage, but our study shows that LLZO-based designs may not provide the expected leap in ,” said Eric Jianfeng Cheng, lead author of the study and researcher at WPI-AIMR, Tohoku University. “Even under ideal conditions, the gains are limited, and the cost and manufacturing challenges are significant.”

Existing research indicates that the accuracy of a Parkinson’s disease diagnosis hovers between 55% and 78% in the first five years of assessment. That’s partly because Parkinson’s sibling movement disorders share similarities, sometimes making a definitive diagnosis initially difficult.

Although Parkinson’s disease is a well-recognized illness, the term can refer to a variety of conditions, ranging from idiopathic Parkinson’s, the most common type, to other like multiple system atrophy, a Parkinsonian variant; and progressive supranuclear palsy. Each shares motor and nonmotor features, like changes in gait, but possesses a distinct pathology and prognosis.

Roughly one in four patients, or even one in two patients, is misdiagnosed.