Scientific theories of consciousness should be falsifiable and non-trivial. Recent research has given us formal tools to analyze these requirements of falsifiability and non-triviality for theories of consciousness. Surprisingly, many contemporary theories of consciousness fail to pass this bar, including theories based on causal structure but also (as I demonstrate) theories based on function. Herein I show these requirements of falsifiability and non-triviality especially constrain the potential consciousness of contemporary Large Language Models (LLMs) because of their proximity to systems that are equivalent to LLMs in terms of input/output function; yet, for these functionally equivalent systems, there cannot be any falsifiable and non-trivial theory of consciousness that judges them conscious. This forms the basis of a disproof of contemporary LLM consciousness. I then show a positive result, which is that theories of consciousness based on (or requiring) continual learning do satisfy the stringent formal constraints for a theory of consciousness in humans. Intriguingly, this work supports a hypothesis: If continual learning is linked to consciousness in humans, the current limitations of LLMs (which do not continually learn) are intimately tied to their lack of consciousness.