Toggle light / dark theme

Magnetic ‘sweet spots’ enable optimal operation of hole spin qubits

Quantum computers, systems that process information leveraging quantum mechanical effects, could reliably tackle various computational problems that cannot be solved by classical computers. These systems process information in the form of qubits, units of information that can exist in two states at once (0 and 1).

Hole spins, the intrinsic angular momentum of holes (i.e., missing electrons in semiconductors that can be trapped in nanoscale regions called quantum dots), have been widely used as qubits. These spins can be controlled using electric fields, as they are strongly influenced by a quantum effect known as spin-orbit coupling, which links the motion of particles to their magnetism.

Unfortunately, due to this spin-orbit coupling, hole spin qubits are also known to be highly vulnerable to noise, including random electrical disturbances that can prompt decoherence. This in turn can result in the loss of valuable quantum information.

Leave a Comment

Lifeboat Foundation respects your privacy! Your email address will not be published.

/* */