Toggle light / dark theme

Helping AI agents search to get the best results out of large language models

Whether you’re a scientist brainstorming research ideas or a CEO hoping to automate a task in human resources or finance, you’ll find that artificial intelligence (AI) tools are becoming the assistants you didn’t know you needed. In particular, many professionals are tapping into the talents of semi-autonomous software systems called AI agents, which can call on AI at specific points to solve problems and complete tasks.

AI agents are particularly effective when they use large language models (LLMs) because those systems are powerful, efficient, and adaptable. One way to program such technology is by describing in code what you want your system to do (the “workflow”), including when it should use an LLM. If you were a software company trying to revamp your old codebase to use a more modern programming language for better optimizations and safety, you might build a system that uses an LLM to translate the codebase one file at a time, testing each file as you go.

But what happens when LLMs make mistakes? You’ll want the agent to backtrack to make another attempt, incorporating lessons it learned from previous mistakes.

Leave a Comment

Lifeboat Foundation respects your privacy! Your email address will not be published.

/* */