Toggle light / dark theme

Self-locked microcomb on a chip tames Raman scattering to achieve broad spectrum and stable output

A research team has successfully developed a self-locked Raman-electro-optic (REO) microcomb on a single lithium niobate chip. By synergistically harnessing the electro-optic (EO), Kerr, and Raman effects within one microresonator, the microcomb has a spectral width exceeding 300 nm and a repetition rate of 26.03 GHz, without the need for external electronic feedback.

The research was published in the Nature Communications. The team was led by Prof. Dong Chunhua from the University of Science and Technology of China (USTC), in collaboration with Prof. Bo Fang’s group from Nankai University.

Optical frequency combs, light sources composed of equally spaced frequency lines, are essential tools in modern optical communications, , and fundamental physics research. While traditional are typically based on bulky mode-locked lasers, recent advances in integrated photonics have enabled chip-scale Kerr and EO combs.

Leave a Comment

Lifeboat Foundation respects your privacy! Your email address will not be published.

/* */