A machine-learning algorithm rapidly generates designs that can be simpler than those developed by humans.
Researchers in optics and photonics rely on devices that interact with light in order to transport it, amplify it, or change its frequency, and designing these devices can be painstaking work requiring human ingenuity. Now a research team has demonstrated that the discovery of the core design concepts can be automated using machine learning, which can rapidly provide efficient designs for a wide range of uses [1]. The team hopes the approach will streamline research and development for scientists and engineers who work with optical, mechanical, or electrical waves, or with combinations of these wave types.
When a researcher needs a transducer, an amplifier, or a similar element in their experimental setup, they draw on design concepts tested and proven in earlier experiments. “There are literally hundreds of articles that describe ideas for the design of devices,” says Florian Marquardt of the University of Erlangen-Nuremberg in Germany. Researchers often adapt an existing design to their specific needs. But there is no standard procedure to find the best design, and researchers could miss out on simpler designs that would be easier to implement.