Toggle light / dark theme

Research teams have established a theoretical method for designing smooth curved wall surfaces with variable cross-section shock tubes, and developed an integrated, high-intensity multifunctional shock tube device. Led by Prof. Luo Xisheng and Prof. Si Ting from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), the study was published in Review of Scientific Instruments.

Based on the device and techniques, the research team further developed a discontinuous perturbation interface generation technology, pioneering the experimental and mechanistic study of strong shock wave impact on single-mode fluid interface instability in shock tubes. The results were published in the Journal of Fluid Mechanics.

Shock wave-induced fluid interface instability is a common key scientific issue in aerospace vehicles and inertial confinement , while the related basic theories are still insufficient. Shock tubes are often employed to carry out basic aerodynamics research. However, the controllable generation of regularly-shaped, high-energy utilization converging and strong shock waves still remains a challenge.

Leave a Comment