Mashour is one of a small set of clinicians and scientists trying to change that. They are increasingly bringing the tools of neuroscience into the operating room to track the brain activity of patients, and testing out anesthesia on healthy study participants. These pioneers aim to learn how to more safely anesthetize their patients, tailoring the dose to individual patients and adjusting during surgery. They also want to better understand what governs the transitions between states of consciousness and even hope to crack the code of coma.
Your brain on anesthesia
Today’s anesthetic arsenal eschews Morton’s original formula for newer, safer drugs. These include ether-based inhalants such as sevoflurane and isoflurane, and the widely used, intravenous anesthetic propofol, all of which wear off faster than early ether-based anesthetics, enabling quicker recovery. (They are also less likely to cause fires and explosions in the operating room, a regular occurrence through the first half of the 20th century.) Despite these improvements, the risks associated with excessive sedation remain high. Depending on the complexity and length of surgery, between 17 and 43 percent of patients may have cognitive problems, typically in memory and executive functions.1 These typically last only one to two weeks after surgery, but few rigorous studies have examined changes in cognitive function in the general population beyond six months after surgery.