A research team from Japan has developed a unified model to scale the transitional pressure development in a one-dimensional flow. This achievement provides a better understanding of how pressure fields build up in the confined fluid system for various acceleration situations, which might be applicable to biomechanics-related impact problems, such as human brain injuries caused by physical contact.
Liquid is usually not considered compressible, except for when subjected to a high-speed flow or rapid acceleration. The latter case is known as the water hammer theory, which often occurs with a loud sound when a water faucet is suddenly closed.
In recent years, the onset of mild traumatic brain injury has been discussed in a similar context, meaning that better understanding of this issue is important in not only traditional engineering but also emerging biomechanics applications.