Menu

Blog

Feb 20, 2024

Traumatic Brain Injury Forges New Neural Pathways

Posted by in categories: biotech/medical, neuroscience

Tufts University School of Medicine researchers developed imaging technology that records neuronal activity throughout the brain during the first weeks of recovery. They discovered that a head injury serious enough to affect brain function, such as that caused by a car accident or sudden fall, leads to changes in the brain beyond the site of impact. In an animal model of traumatic brain injury, the researchers found that both hemispheres work together to forge new neural pathways in an attempt to replicate those that were lost.

Their findings are published in Cerebral Cortex in an article titled, “Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model.

“Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions,” wrote the researchers. “In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI.”

Comments are closed.