Imagine you’re visiting a friend abroad, and you look inside their fridge to see what would make for a great breakfast. Many of the items initially appear foreign to you, with each one encased in unfamiliar packaging and containers. Despite these visual distinctions, you begin to understand what each one is used for and pick them up as needed.
Inspired by humans’ ability to handle unfamiliar objects, a group from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) designed Feature Fields for Robotic Manipulation (F3RM), a system that blends 2D images with foundation model features into 3D scenes to help robots identify and grasp nearby items. F3RM can interpret open-ended language prompts from humans, making the method helpful in real-world environments that contain thousands of objects, like warehouses and households.
F3RM offers robots the ability to interpret open-ended text prompts using natural language, helping the machines manipulate objects. As a result, the machines can understand less-specific requests from humans and still complete the desired task. For example, if a user asks the robot to “pick up a tall mug,” the robot can locate and grab the item that best fits that description.
Comments are closed.