Menu

Blog

Aug 15, 2023

Revolutionary hardware unveils new quantum computing model

Posted by in categories: computing, information science, particle physics, quantum physics

A potentially game-changing theoretical approach to quantum computing hardware avoids much of the problematic complexity found in current quantum computers. The strategy implements an algorithm in natural quantum interactions to process a variety of real-world problems faster than classical computers or conventional gate-based quantum computers can.

“Our finding eliminates many challenging requirements for quantum hardware,” said Nikolai Sinitsyn, a at Los Alamos National Laboratory. He is co-author of a paper on the approach in the journal Physical Review A. “Natural systems, such as the electronic spins of defects in diamond, have precisely the type of interactions needed for our process.”

Sinitsyn said the team hopes to collaborate with experimental physicists also at Los Alamos to demonstrate their approach using ultracold atoms. Modern technologies in are sufficiently advanced to demonstrate such computations with about 40 to 60 qubits, he said, which is enough to solve many problems not currently accessible by classical, or binary, computation. A is the basic unit of quantum information, analogous to a bit in familiar classical computing.

Comments are closed.