Summary: Training a machine learning algorithm with synthetic data for image classification can rival one trained on traditional datasets.
Source: MIT
Huge amounts of data are needed to train machine-learning models to perform image classification tasks, such as identifying damage in satellite photos following a natural disaster. However, these data are not always easy to come by. Datasets may cost millions of dollars to generate, if usable data exist in the first place, and even the best datasets often contain biases that negatively impact a model’s performance.
Comments are closed.