Notice: Trying to access array offset on value of type null in /var/www/html/blog/wp-content/themes/blackphoto-10/functions.php on line 1179


Apr 11, 2016

Reconstituting Asteroids into Mechanical Automata

Posted by in categories: computing, robotics/AI, space travel

Jason Dunn Made In Space, Inc.

The objective of this study is for Made In Space (MIS) to establish the concept feasibility of using the age-old technique of analog computers and mechanisms to convert entire asteroids into enormous autonomous mechanical spacecraft. Project RAMA, Reconstituting Asteroids into Mechanical Automata, has been designed to leverage the advancing trends of additive manufacturing (AM) and in-situ resource utilization (ISRU) to enable asteroid rendezvous missions in which a set of technically simple robotic processes convert asteroid elements into very basic versions of spacecraft subsystems (GNC, Propulsion, Avionics). Upon completion, the asteroid will be a programmed mechanical automata carrying out a given mission objective; such as relocation to an Earth-Moon libration point for human rendezvous or perhaps to set an Earth-threatening NEO on course to the outer solar system and out of harm’s way. This technique will create an affordable and scalable way for NASA to achieve future roadmap items for both the Human Exploration and Operations Mission Directorate (HEOMD) and the Science Mission Directorate (SMD) such as Asteroid Redirect Mission (ARM), New Frontiers Comet Surface Sample Return, and other Near Earth Object (NEO) applications. It is estimated that an order of magnitude increase in NEO targets can be explored for the same mission cost with the RAMA approach compared to the SOA Asteroid Redirect Mission (ARM) architecture by removing the need to launch all spacecraft subsystems and instead converting the asteroid into them in-situ. Assuming the development trends continue for industry based AM methods as well as NASA and industry investments in ISRU capabilities, Project RAMA will create a space mission architecture capable of achieving the aforementioned NASA goals within a 20–30 year time frame. Furthermore, as described in the proposal, the identified study path will provide insight into near term Mission ‘Pull’ technologies worth investment in order to create the development roadmap for the proposed ‘Push’ technologies for achieving NASA’s long term strategic goals.

Read more

Comments are closed.