Menu

Blog

Page 9

Mar 17, 2024

Role of specific protein in activating immune cells: Study

Posted by in categories: biotech/medical, health

A new study provided light on the role of the protein STAP-1 in activating certain immune cells. Understanding STAP-1’s involvement in these cells may help researchers gain a better understanding of immune-related diseases and potential treatments.

Hindustan Times — your fastest source for breaking news! Read now.

The researchers discovered that STAP-1 plays a key role in the activation of T cells, which are white blood cells that help the body defend itself against infections and preserve overall health. T cells are capable of identifying foreign substances that elicit an immune response (antigens) and developing tailored responses to destroy pathogens like bacteria and viruses.

Mar 17, 2024

How microbes influence our brain health

Posted by in categories: biotech/medical, health, neuroscience

Our gut microbiome has been linked to conditions such as Parkinson’s and Alzheimer’s. Anthony King reports on the connections.

Mar 17, 2024

Black Hole Portraits Will Become More Frequent

Posted by in category: cosmology

This year marks the fifth anniversary of the release of the first-ever image of a black hole, which revealed the glowing doughnut of the supermassive black hole called M87*. The research team that produced the image—the Event Horizon Telescope (EHT) Collaboration—recently released a second image of that same black hole, which lies 55 million light years from Earth [1]. This image comes from an updated version of the EHT and confirms key features of the black hole while also revealing changes over time in the pattern of light emanating from the disk surrounding the object. Starting with this release, the collaboration expects to issue increasingly frequent updates in support of the newly developing field of black hole imaging.

“Producing the first image of M87* was a herculean effort and involved creating, testing, and verifying many different schemes and approaches to analyzing and interpreting the data,” says Princeton University astrophysicist Andrew Chael, a member of the EHT Collaboration. “Now we are beginning to transition to a point where we understand our instrument and our analysis frameworks really well, so I think we are going to be releasing results a lot more quickly.”

Supermassive black holes are extremely distant and compact objects, two properties that make them extraordinarily difficult to image. For example, M87* appears to us as no bigger than an orange on the Moon as viewed from Earth. The 2019 image of M87* was pieced together using data collected in April 2017 from eight radio telescopes spread across the globe. All the telescopes in that array collected data simultaneously, allowing scientists to treat them as one giant radio-wave detector. The bigger a radio telescope, the smaller the objects it can image, and an Earth-sized detector opened the possibility of observing sources as small as supermassive black holes. So far, the EHT has imaged M87* and Sagittarius A*, the black hole at the center of the Milky Way (see Research News: First Image of the Milky Way’s Black Hole).

Mar 17, 2024

Measuring the Timing of Electrons in a Beam

Posted by in categories: futurism, quantum physics

A new method to measure the arrival times of electrons could aid in the design of future electron microscopes.

For researchers working to develop the next generation of electron microscopes, understanding the details of electron beams is essential. Now a research team has observed the weak repulsion of electrons in a continuous beam with the highest precision to date by measuring the number of electrons arriving at a detector within a timeframe of less than 1 picosecond (ps) [1]. With improvements, the new technique may be able to pick up the repulsion attributable to the Pauli exclusion principle. The researchers think the work may eventually help engineers design more sensitive electron microscopes based on quantum principles.

Many natural events such as rain falling are uncorrelated: the fall of each raindrop is independent of every other raindrop. Given a certain time window, say 1 second, the likelihood that zero, one, two, or more raindrops will fall within a certain area is predicted by a statistical distribution called a Poissonian. If, however, the raindrops could interact, then their arrivals might be correlated or anticorrelated—the drops could fall together more often or less often, depending on whether the interaction is attractive or repulsive. Then the probability of similarly timed raindrops would be either super-Poissonian (occurring more often) or sub-Poissonian (occurring less often).

Mar 17, 2024

Molecular Lawnmower Drives Itself

Posted by in category: futurism

A protein-based motor uses a trimming mechanism to move forward across a field of grass-like peptide segments.

Mar 17, 2024

A Supernova Remnant Shaped by Vortices

Posted by in category: cosmology

The clumpy structure of a ring of gas ejected by the progenitor star of the supernova 1987A could have formed when vortices in the gas interacted.

Mar 17, 2024

Quantum Leap in Material Science: Researchers Unveil AI-Powered Atomic Fabrication Technique

Posted by in categories: chemistry, particle physics, quantum physics, robotics/AI, science

Researchers at the National University of Singapore (NUS) have developed an innovative method for creating carbon-based quantum materials atom by atom. This method combines the use of scanning probe microscopy with advanced deep neural networks. The achievement underlines the capabilities of artificial intelligence (AI) in manipulating materials at the sub-angstrom level, offering significant advantages for basic science and potential future uses.

Open-shell magnetic nanographenes represent a technologically appealing class of new carbon-based quantum materials, which host robust π-spin centers and non-trivial collective quantum magnetism. These properties are crucial for developing high-speed electronic devices at the molecular level and creating quantum bits, the building blocks of quantum computers.

Continue reading “Quantum Leap in Material Science: Researchers Unveil AI-Powered Atomic Fabrication Technique” »

Mar 17, 2024

Quantum Leap: How Spin Squeezing Pushes Limits of Atomic Clock Accuracy

Posted by in categories: particle physics, quantum physics

Physicists are pushing the limits of atomic clock accuracy by using spin-squeezed states, achieving groundbreaking control over quantum noise and entanglement, leading to potential leaps in quantum metrology.

While atomic clocks are already the most precise timekeeping devices in the universe, physicists are working hard to improve their accuracy even further. One way is by leveraging spin-squeezed states in clock atoms. Spin-squeezed states are entangled states in which particles in the system conspire to cancel their intrinsic quantum noise. These states, therefore, offer great opportunities for quantum-enhanced metrology since they allow for more precise measurements. Yet, spin-squeezed states in the desired optical transitions with little outside noise have been hard to prepare and maintain.

One particular way to generate a spin-squeezed state, or squeezing, is by placing the clock atoms into an optical cavity, a set of mirrors where light can bounce back and forth many times. In the cavity, atoms can synchronize their photon emissions and emit a burst of light far brighter than from any one atom alone, a phenomenon referred to as superradiance. Depending on how superradiance is used, it can lead to entanglement, or alternatively, it can instead disrupt the desired quantum state.

Mar 17, 2024

MIT’s Electron Spin Magic Sparks Computing Evolution

Posted by in categories: computing, particle physics

An MIT team precisely controlled an ultrathin magnet at room temperature, which could enable faster, more efficient processors and computer memories.

Experimental computer memories and processors built from magnetic materials use far less energy than traditional silicon-based devices. Two-dimensional magnetic materials, composed of layers that are only a few atoms thick, have incredible properties that could allow magnetic-based devices to achieve unprecedented speed, efficiency, and scalability.

While many hurdles must be overcome until these so-called van der Waals magnetic materials can be integrated into functioning computers, MIT researchers took an important step in this direction by demonstrating precise control of a van der Waals magnet at room temperature.

Mar 17, 2024

Radiation From Massive Stars — 100,000 Times More Luminous Than the Sun — Shapes Planetary Systems

Posted by in category: space

An international team used the James Webb Space Telescope to study a protoplanetary disc in the Orion Nebula, revealing how massive stars significantly influence the formation of planetary systems. They discovered that intense ultraviolet radiation from these stars can prevent the formation of Jupiter-like planets in systems like d203-506, providing new insights into the complexities of how planetary systems develop.

How do planetary systems such as the Solar System form? To find out, CNRS scientists taking part in an international research team[1] studied a stellar nursery, the Orion Nebula, using the James Webb Space Telescope.[2] By observing a protoplanetary disc named d203-506, they have discovered the key role played by massive stars in the formation of such nascent planetary systems.[3].

Page 9 of 10,810First678910111213Last