Toggle light / dark theme

Histone proteins provide essential structural support for DNA in chromosomes, acting as spools around which DNA strands wrap. These proteins have been well studied, but most current tools to study gene expression rely on RNA sequencing. Histone RNA is unique in that its structure prevents the RNA molecules from being detected by current methods.

Thus, the expression of histone genes may be significantly underestimated in tumor samples. The researchers hypothesized that the increased proliferation of cancer cells leads to a very elevated expression, or hypertranscription, of histones to meet the added demands of cell replication and division.

To test their hypothesis, the researchers used CUTAC profiling to examine and map RNAPII, which transcribes DNA into precursors of messenger RNA. They studied 36 FFPE samples from patients with meningioma – a common and benign brain tumor – and used a novel computational approach to integrate this data with nearly 1,300 publicly available clinical data samples and corresponding clinical outcomes.

In tumor samples, the RNAPII enzyme signals found on histone genes were reliably able to distinguish between cancer and normal samples.

RNAPII signals on histone genes also correlated with clinical grades in meningiomas, accurately predicting rapid recurrence as well as the tendency of whole-arm chromosome losses. Using this technology on breast tumor FFPE samples from 13 patients with invasive breast cancer also predicted cancer aggressiveness.


Using a new technology and computational method, researchers have uncovered a biomarker capable of accurately predicting outcomes in meningioma brain tumors and breast cancers.

An international team of astronomers led by scientists from the Netherlands has shown that a white dwarf and a red dwarf orbiting each other every two hours are emitting radio pulses. Thanks to observations with several telescopes, the researchers were able to determine the origin of these pulses with certainty for the first time. Their results are published in Nature Astronomy.

In recent years, thanks to better analysis techniques, researchers have detected pulses that last from seconds to minutes and seem to come from stars in the Milky Way. There have been many hypotheses about what triggers these pulses, but until now there has been no hard evidence. An international study led by Iris de Ruiter of the Netherlands changes this.

De Ruiter, who received her Ph.D. from the University of Amsterdam in October 2024, is now a postdoctoral researcher at the University of Sydney (Australia). During the last year of her Ph.D., she developed a method to search for radio pulses of seconds to minutes in the LOFAR archive. While improving the method, she discovered a single in the 2015 observations. When she subsequently sifted through more archive data from the same patch of sky, she discovered six more pulses. All the pulses came from a source called ILTJ1101.

Getting mRNA into the brain could allow scientists to instruct brain cells to produce therapeutic proteins that can help treat or prevent disease by replacing missing proteins, reducing harmful ones, or activating the body’s defenses.

The research team designed and tested a library of lipids to optimize their ability to cross the blood-brain barrier. Through a series of structural and functional analyses, they identified a lead formulation, termed MK16 BLNP, that exhibited significantly higher mRNA delivery efficiency than existing lipid nanoparticles approved by the Food and Drug Administration (FDA). This system takes advantage of natural transport mechanisms within the blood-brain barrier, including caveolae-and γ-secretase-mediated transcytosis, to move nanoparticles across the barrier, say the investigators.

In studies using mouse models of disease, the BLNP platform successfully delivered therapeutic mRNAs to the brain, demonstrating its potential for clinical application.


Scientists have developed a lipid nanoparticle system capable of delivering messenger RNA (mRNA) to the brain via intravenous injection, a challenge that has long been limited by the protective nature of the blood-brain barrier.

The findings, in mouse models and isolated human brain tissue, were published in Nature Materials. They demonstrate the potential of this technology to pave the way for future treatments for a wide range of conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis, brain cancer, and drug addiction.

The blood-brain barrier serves as a protective shield, preventing many substances—including potentially beneficial therapies—from reaching the brain. While previous research introduced a platform for transporting large biomolecules such as proteins and oligonucleotides into the central nervous system, this new study focuses on a different approach: using specially designed lipid nanoparticles to transport mRNA across the barrier.

We are in the middle of a big website upgrade and it just gave a bit of results: John Cena is now following us on X! Our account on X is https://twitter.com/LifeboatHQ

T know, here is info about John Cena: https://en.wikipedia.org/wiki/John_Cena


Check out our 3 new books at https://lifeboat.com/ex/books! Programs at https://lifeboat.com/ex/programs.

This innovation, called ALA-CART, helps the immune system better recognize and destroy resistant cancers. The new design not only improves treatment success but also promises fewer side effects.

A Powerful Upgrade to CAR-T Therapy

Researchers at the University of Colorado Anschutz Medical Campus have developed an enhanced version of CAR-T cell therapy designed to improve effectiveness and longevity, particularly against cancer cells that were previously difficult to detect and eliminate.

Scientists have achieved their initial goal of converting light into a supersolid material that unites solid-stage characteristics with those of superfluids. The discovery establishes paths toward studying uncommon quantum nature states of matter while carrying great implications for technological growth.

The matter form known as a supersolid behaves as both a solid and shows the properties of a superfluid. Despite keeping its rigid arrangement, the material demonstrates smooth flow while remaining non-frictional. Theoretical research on supersolids as a matter state has continued for decades since scientists first considered them in the 1970s. Through precise conditions, scientists believe materials can develop combined solid and superfluid properties to produce an absolute natural anomaly.

The discovery shows how particular materials become supple when exposed to exceptionally cold temperatures because they transition into a viscosity-free state. The dual properties of rigidness combined with fluidity create an extraordinary phase called supersolid in matter. Traditional materials possess two distinct states because solids maintain their shape, yet liquids possess free movement. Supersolids demonstrate behaviour beyond normal fluid-solid definitions because they exhibit features of both states.

Sunburns and aging skin are obvious effects of exposure to harmful UV rays, tobacco smoke and other carcinogens. But the effects aren’t just skin deep. Inside the body, DNA is literally being torn apart.

Understanding how the body heals and protects itself from DNA damage is vital for treating genetic disorders and life-threatening diseases such as cancer. But despite numerous studies and medical advances, much about the molecular mechanisms of DNA repair remains a mystery.

For the past several years, researchers at Georgia State University have tapped into the Summit supercomputer at the Department of Energy’s Oak Ridge National Laboratory to study an elaborate molecular pathway called (NER). NER relies on an array of highly dynamic protein complexes to cut out (excise) damaged DNA with surgical precision.

Over the past two years, the U.S. Centers for Disease Control and Prevention (CDC) has issued Travel Health Advisories focused on measles outbreaks.

These advisories highlight where there is an active health risk when people visit the highlighted countries.

On February 21, 2025, the CDC reissued a Level 1, Practice Usual Precautions, alert for 57 countries. This CDC list does not integrate the Region of the Americas, with numerous countries reporting 537 measles outbreaks this year.

In anticipation for my next public lecture, the organizer requested the title of my lecture. I suggested: “Hunting for Aliens.” The organizer expressed concern that some members of the audience might confuse me for a U.S. government employee in search of illegal aliens near the southern border wall. I explained that no two-dimensional wall erected on Earth would protect us from extraterrestrials because they will arrive from above. It is just a matter of time until we notice interstellar travelers arriving without a proper visa. A policy of deporting them back to their home exoplanet will be expensive — over a billion dollars per flight. The trip will also take a long time — over a billion years with conventional chemical propulsion. We will have to learn how to live with these aliens, and promote diversity and inclusion in a Galactic context.

The Sun formed in the last third of cosmic history, so we are relatively late to the party of interstellar travelers. Experienced travelers might have been engaged in their interstellar journeys for billions of years. To properly interpret their recorded diaries and photo albums in terms of the specific stars they visited, we would need to accurately interpret their time measurements.

Imagine an interstellar tourist wearing a mechanical analog watch. Such a timepiece is at best accurate to within 3 seconds per day, or equivalently 30,000 years per billion years. This timing error is comparable to the amount of time it takes to hop from one star to another with chemical propulsion. Interstellar travelers must wear better clocks in order to have a reliable record of time.