Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Immunoglobulin G’s overlooked hinge turns out to be a structural control hub

The lower hinge of immunoglobulin G (IgG), an overlooked part of the antibody, acts as a structural and functional control hub, according to a study by researchers at Science Tokyo. Deleting a single amino acid in this region transforms a full-length antibody into a stable half-IgG1 molecule with altered immune activity.

The findings provide a blueprint for engineering next-generation antibody therapies with precisely tailored immune effects for treating diseases such as cancer and autoimmune diseases.

Antibodies are Y-shaped proteins that help the immune system recognize and eliminate foreign threats such as bacteria and viruses. The dominant antibody in the bloodstream is immunoglobulin G (IgG), which accounts for about 75% of circulating antibodies. Its structure is divided into two main functional units connected by a flexible hinge that must work together seamlessly.

Shining a light on sustainable sulfur-rich polymers that stay recyclable

For the first time, scientists have used ultraviolet (UV) light, a low-cost and readily available energy source, to successfully synthesize more sustainable and recyclable polymer materials. Led by green chemistry experts at Flinders University, the development is a major step in making polymers high in sulfur content for more sustainable plastic alternatives using waste materials.

Their paper, “Making and Unmaking Poly(trisulfides) with Light: Precise Regulation of Radical Concentrations via Pulsed LED Irradiation” is published in the Journal of the American Chemical Society.

3D covalent organic framework offers sustainable solution for wastewater treatment

Industrial dye pollution remains one of the most persistent and hazardous challenges in global wastewater management. The dyes from textile and chemical manufacturing sectors are difficult to remove, non-biodegradable, and can be toxic to plants, animals, and humans. However, conventional treatment technologies for dyes often fail to efficiently purify the wastewater without significant trade-offs.

To remedy this issue, researchers from Tohoku University developed a three-dimensional covalent organic framework (COF), TU-123, that enables highly efficient and selective removal of anionic dyes from contaminated water.

The highly porous COF acts like a sponge—trapping dyes for easier separation. This work establishes a new structural blueprint for constructing highly connected imidazole-linked three-dimensional COFs. Furthermore, it opens sustainable pathways for advanced wastewater purification technologies.

Exploration of exoplanets: A mathematical solution for investigating their atmospheres

Dr. Leonardos Gkouvelis, researcher at LMU’s University Observatory Munich and member of the ORIGINS Excellence Cluster, has solved a fundamental mathematical problem that had obstructed the interpretation of exoplanet atmospheres for decades. In a paper published in The Astrophysical Journal, Gkouvelis presents the first closed-form analytical theory of transmission spectroscopy that accounts for how atmospheric opacity varies with pressure—an effect that is crucial in the scientific exploration of real atmospheres but had until now been considered mathematically intractable.

For more than 30 years, analytical models were based on a “simplified” atmosphere, as the full mathematical treatment requires solving a complex geometric integral in the presence of altitude-dependent opacity—a problem that could only be tackled using expensive numerical simulations. However, this limitation concealed how the true vertical structure of an atmosphere alters the signals observed by telescopes.

The new model provides key insights into why many exoplanet atmospheres display “muted” spectral features, directly links laboratory molecular-physics data with astronomical observations, and significantly improves agreement with real data—both for Earth’s atmosphere and for high-precision observations of exoplanets.

Random driving on a 78-qubit processor reveals controllable prethermal plateau

Time-dependent driving has become a powerful tool for creating novel nonequilibrium phases such as discrete time crystals and Floquet topological phases, which do not exist in static systems. Breaking continuous time-translation symmetry typically leads to the outcome that driven quantum systems absorb energy and eventually heat up toward a featureless infinite-temperature state, where coherent structure is lost.

Understanding how fast this heating process occurs and whether it can be controlled has become a challenge in nonequilibrium physics. High-frequency periodic driving is known to delay heating, but much less is known about heating dynamics under more general, non-periodic driving protocols.

Flavanols Break the Rules of Nutrition: Scientists Uncover the Surprising Way They Boost the Brain

The health benefits of dietary flavanols appear to come from their ability to trigger responses in the brain and the body’s stress systems. That slightly dry, tightening feeling some foods leave in the mouth is known as astringency, and it comes from naturally occurring plant compounds called pol

Laser Light Rewrites Magnetism in Breakthrough Quantum Material

Researchers at the University of Basel and ETH Zurich have found a way to flip the magnetic polarity of an unusual ferromagnet using a laser beam. If the approach can be refined and scaled, it points toward electronic components that could be reconfigured with light instead of being permanently fixed.

A ferromagnet acts like it has a built-in internal agreement. Inside the material, enormous numbers of electrons behave like tiny bar magnets because of their spins. When those spins line up, their individual magnetic fields add together, producing the familiar strength that makes a compass needle settle in a direction or lets a refrigerator magnet cling to a door.

That orderly alignment is not automatic, because heat constantly shakes the system. Ferromagnetism appears only when the interactions that encourage alignment win out over thermal motion, which happens below a critical temperature (often called the Curie temperature).

Physicists Watch a Superfluid Freeze, Revealing a Strange New Quantum State of Matter

Physicists have observed a strange new quantum phase in a graphene-based system, where a superfluid appears to freeze into a solid-like state. Cooling usually pushes matter through a simple sequence. A gas condenses into a liquid, and with further cooling the liquid locks into a solid. Helium hel

/* */