Understanding the interaction between light and matter at the smallest scales (angstrom scale) is essential for advancing technology and materials science. Atomic-scale structures, such as defects in diamonds or molecules in electronic devices, can significantly influence a material’s optical properties and functionality. To explore these tiny structures, we need to extend the capabilities of optical microscopy.
Researchers at the Fritz-Haber Institute of the Max-Planck Society, Germany, and their international collaborators at Institute for Molecular Science/SOKENDAI, Japan and CIC nanoGUNE, Spain have developed an approach to scattering-type scanning near-field optical microscopy (s-SNOM) that achieves a spatial resolution of 1 nanometer. This technique, termed as ultralow tip oscillation amplitude s-SNOM (ULA-SNOM), combines advanced microscopy methods to visualize materials at the atomic level.
The work is published in the journal Science Advances.