Toggle light / dark theme

Lafourcade et al. reveal that apical oblique dendrites of retrosplenial cortical L5 neurons exhibit unexpectedly linear integration compared with basal and tuft branches via increased synaptic AMPA: NMDA. Long-range inputs are targeted to these distinct dendritic domains, supporting the idea that single neurons perform a diverse range of subcellular processing.

Researchers at Purdue University have developed an “ultra-white” paint that reflects 98 per cent of sunlight and deflects infrared heat, allowing buildings to cool below the surrounding air temperature.

The paint, which the university describes as the “whitest paint on record”, owes its cooling power to barium sulphate – a pigment derived from the mineral barite – and reflects up to 98.1% of sunlight.

Unlike the titanium dioxide used in traditional white paints, which absorbs UV light, the barium sulphate is also capable of deflecting infrared heat away from the surface to which it is applied.

Somewhere in the body of a patient, a small clump of cells, growing undetected, has begun to form a tumor. It has yet to cause pain or visible symptoms of illness. Several months from now, or perhaps years, those first signs will prompt a doctor’s inquiry, a referral to a specialist, and an eventual diagnosis. Treatment will depend on how long the cancer has gone unnoticed and how far it has spread.

There were early signs, though not ones the patient or doctor could have noticed. Small fragments of RNA, cast off from dying cells or spit out of the tumor’s twisted transcriptions, floating about in the bloodstream—early signals of a tissue in distress.

A new method developed by Stanford researchers aims to bring the moment of detection much closer to the beginning. They have developed a blood-based method called RARE-seq that detects tumor-derived cell-free RNA with around 50 times the sensitivity of standard sequencing techniques.