Decision-making often involves trial and error, but conventional models assume we always act optimally based on past experience.

Join us as we journey beyond the birth of the universe to unravel the mysteries of what might have preceded the Big Bang—and whether time itself had a beginning.
Watch my exclusive video Mass Drivers on the Moon: https://nebula.tv/videos/isaacarthur–…
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa…
Use the link https://gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $36.
Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a…
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.
Credits:
Before the Big Bang — What Came Before Time?
Episode 738; July 20, 2025
Written, Produced & Narrated by: Isaac Arthur.
Select imagery/video supplied by Getty Images.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
0:00 Intro Asking the Impossible.
2:08 The Limits of Time and Spacetime.
7:45 Beyond the Big Bang: Alternate Beginnings.
14:38 Other Realities: Higher Dimensions and Shadow Universes.
18:28 Emergent Time.
22:38 Bubble Collisions and Multiverse Scars.
24:44 Conclusion: What Came Before Time?
Karl Friston, Michael Levin, and Chris Field sit down for an epochal conversation on cognition and consciousness.
Sponsor: Brilliant: https://brilliant.org/TOE for 20% off.
Patreon: https://patreon.com/curtjaimungal.
Crypto: https://tinyurl.com/cryptoTOE
PayPal: https://tinyurl.com/paypalTOE
Twitter: https://twitter.com/TOEwithCurt.
Discord Invite: https://discord.com/invite/kBcnfNVwqs.
iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-wit…1521758802
Pandora: https://pdora.co/33b9lfP
Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e.
Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything.
Merch: https://tinyurl.com/TOEmerch.
CORRECTION:
- Chris Fields emailed me the following: “I referred to Peter Strawson when I meant to refer to his son, Galen Strawson, who has done the work on panpsychism.”
LINKS MENTIONED:
- Curt’s AMA #:3 https://youtu.be/SX9q2D6b5bc.
- Karl Friston #2: https://youtu.be/SWtFU1Lit3M
- Karl Friston #1: https://youtu.be/2v7LBABwZKA
- Michael Levin: https://youtu.be/Z0TNfysTazc.
TIMESTAMPS:
00:00:00 Introduction.
00:03:20 Michael Levin answers: “What do you respect about Chris / Karl?“
00:04:45 Chris Fields answers: “What do you respect about Michael / Karl?“
00:05:45 Karl Friston answers: “What do you respect about Chris / Michael?“
00:07:46 Self organization / Autopoiesis / Why does life form?
00:12:11 How does cognition emerge from smaller parts?
00:14:18 Why do we see “things” independent from one another? Why in space / time?
00:18:40 Relationship between cognition and consciousness.
00:22:03 The Meta Hard Problem.
00:30:37 Why is complexity associated with “awareness”?
00:35:56 Is society one large brain, with each person acting as a neuron?
00:44:17 Duality between: Did you act on the world? Or did the world act on you?
00:51:32 Babbling, and becoming a “self“
01:11:22 “300 milliseconds” is a special unit of time for consciousness.
01:15:49 Quantum Babbling.
01:21:49 The difference between “randomness” and “quantum randomness“
01:30:03 The difference between “external” and “internal” are both real and illusory.
01:33:41 Studying consciousness / the self and the concomitant existential dread.
01:48:19 Michael Levin: “Something important goes all the way down“
01:51:12 Science starts with faith.
As many in the field would agree, the growing interest in two-dimensional (2D) materials is not just a trend, it reflects real progress and curiosity. Materials like graphene and MoS2 have shown fascinating behaviour, particularly because they are atomically thin and yet still possess strong electrical, optical, and mechanical properties. These features make them promising candidates for new directions in electronics. That said, turning this promise into reliable technology is still a work in progress.
This Collection focuses on how 2D materials are being developed and used in integrated electronics. The emphasis is not only on device performance, but also on the actual process of bringing these materials into practical systems. From what I have seen, some of the most exciting results come from experiments where 2D materials are added into traditional semiconductor setups, whether that is in transistors, photodetectors, or memory elements. But challenges like scalability, environmental stability, and material quality remain real obstacles.
We’re interested in contributions across the board: device demonstrations, growth techniques, interface studies, or even theoretical modelling that can guide experimental designs. For instance, studies on how these materials interact with metal contacts, or how to reduce contact resistance, are very relevant here. So are efforts to pattern or align 2D layers over large areas, which is a challenge still not fully solved.
As soon as 2DMs are employed for devices, at some point they have to be grown or transferred onto insulators. A wide range of insulators has already been suggested for the use with 2DMs, starting with the amorphous 3D oxides known from Si technologies (SiO2, HfO2, Al2O3), and expanding to native 2D oxides (MoO3, WO3, Bi2SeO5), layered 2D crystals (hBN, mica) and 3D crystals like fluorides (CaF2, SrF2, MgF2) or perovskites (SrTiO3, BaTiO3). These insulators also contain various defects which can also be detrimental to device stability and reliability. Again, on the other hand, these defects can be exploited for added functionality like resistive switching devices, neuromorphic devices, and sensors.
Finally, 2DMs need to be contacted with metals, which typically introduces defects in the 2DMs which then have a strong impact on the behaviour of the resulting Schottky contacts as they tend to pin the Fermi-level and result in large series resistances.
This collection aims to provide a comprehensive overview of the latest research on defect characterization and control in 2D materials and devices. By bringing together studies that utilize advanced theoretical calculations, such as density functional theory (DFT) and first-principles calculations, as well as experimental techniques like transmission electron microscopy (TEM), scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM), and various optical spectroscopies, this collection seeks to deepen our understanding of defect formation, propagation, control, and their impact on device performance.
After the successful separation of a monolayer of carbon atoms with honeycomb lattice known as graphene in 2004, a large group of 2D materials known as TMDCs and MXenes were discovered and studied. The realm of 2D materials and their heterostructures has created new opportunities for the development of various types of advanced rigid, flexible and stretchable biosensors, and chemical, optoelectronic and electrical sensors due to their unique and versatile electrical, chemical, mechanical and optical properties. The high surface to volume ratio and quantum confinement in 2D materials make them strong candidates for the development of sensors with improved sensitivity and performance. This group of atomically thin material also offer mechanical flexibility and limited stretchability harvested towards making flexible and stretchable sensors that can be used at the interface with soft tissues and in soft robotics. However, challenges remain in fully realizing their potential in practical applications.
The aim of this collection is to highlight the current progress in the research of 2D materials, focusing on their integration into sensing technologies. We seek to provide a comprehensive overview of the advancements made in this area while addressing the challenges faced in developing practical applications.
In this study, we have shown that Bald’s eyesalve, an Anglo-Saxon remedy for eye sty infections, displays growth inhibitory activity against S. aureus and P. aeruginosa, including a multi-drug resistant strain. This activity was more pronounced against S. aureus than P. aeruginosa, which is consistent with the fact that Gram-negative bacteria, particularly Pseudomonads, are notably more resistant to antibacterial agents than Gram-positive bacteria, including Staphylococcus sp. [12]. Our data indicate that the specific formulation composition had little impact on the inhibition of S. aureus. This is inconsistent with a previous report where the presence of an additional Allium species, onion or leek, was found to significantly contribute to the antibacterial activity of Bald’s eyesalve [6]; however, this previous study evaluated the antibacterial activity using a synthetic wound model in which S. aureus inoculum was grown as a biofilm for 24 hr prior to treatment and based upon colony-forming units [6]. Our conflicting results may be due to our assessment of the antibacterial activity of Bald’s eyesalve exclusively against planktonic S. aureus rather than S. aureus biofilms, and we did not investigate whether onion or leek are necessary for specific efficacy against bacterial biofilms. Previous studies have shown that quercetin, an antibacterial flavonoid found in onion [13], and its derivatives demonstrate anti-biofilm and anti-quorum sensing activity against S. aureus and P. aeruginosa [14, 15]. Although plant extracts have been shown to display growth inhibitory activity against P. aeruginosa [16, 17], to our knowledge our study represents the first report of the antibacterial efficacy of Bald’s eyesalve against P. aeruginosa.
Although all known Allium species contain organosulfur compounds, the chemical composition and resultant antibacterial activity of their extracts greatly varies [18]. Prior investigations have determined the main constituents of garlic essential oil to be diallyl disulfide (DADS), diallyl trisulfide (DATS), allyl methyl trisulfide, diallyl sulfide (DAS), and diallyl tetrasulfide (DATTS), while the main constituents of onion and leek essential oils were found to be dipropyl disulfide, dipropyl trisulfide, methyl propyl disulfide, methyl propyl trisulfide, and 1-propenyl propyl disulfide [18, 19]. Tsao et al. previously demonstrated that DAS, DADS, DATS, and DATTS exhibit MICs of 20, 4, 2, and 0.5 μg/ml against S. aureus, respectively, and 80, 64, 32, and 12 μg/ml against P. aeruginosa, respectively [20, 21].