Toggle light / dark theme

11.08.18 JOVIAN CLOSE ENCOUNTER A multitude of magnificent, swirling clouds in Jupiter’s dynamic North North Temperate Belt is captured in this image from NASA’s Juno spacecraft. Appearing in the scene are several bright-white “pop-up” clouds as well as an anticyclonic storm, known as a white oval. This color-enhanced image was taken at 1:58 p.m. PDT on Oct. 29, 2018 (4:58 p.m. EDT) as the spacecraft performed its 16th close flyby of Jupiter. At the time, Juno was about 4,400 miles (7,000 kilometers) from the planet’s cloud tops, at a latitude of approximately 40 degrees north. Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft’s JunoCam imager. JunoCam’s raw images are available for the public to peruse and to process into image products at: https://www.missionjuno.swri.edu/news/jovian_close_encounter. Image Credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran. Απολαύστε το φως.

Read more

  • China’s state press agency has developed “AI news anchors,” avatars of real-life news presenters which read out news as it is typed.
  • It developed the anchors with Chinese search engine giant Sogou.
  • There was no detail given as to how exactly the anchors were made, and one expert said they fell into the “uncanny valley,” when avatars have an unsettling resemblance to humans.

China’s state-run press agency Xinhua has unveiled what it claims are the world’s first AI-generated news anchors.

Xinhua revealed the anchors at the World Internet Conference on Thursday. Modeled on two real presenters, the agency showcased two AI-generated anchors, one who speaks Chinese and another who speaks English.

Read more

Now scientists at the Large Hadron Collider (LHC) at Cern think they may have seen another particle, detected as a peak at a certain energy in the data, although the finding is yet to be confirmed. Again there’s a lot of excitement among particle physicists, but this time it is mixed with a sense of anxiety. Unlike the Higgs particle, which confirmed our understanding of physical reality, this new particle seems to threaten it.

The new result – consisting of a mysterious bump in the data at 28 GeV (a unit of energy) – has been published as a preprint on ArXiv. It is not yet in a peer-reviewed journal – but that’s not a big issue. The LHC collaborations have very tight internal review procedures, and we can be confident that the authors have done the sums correctly when they report a “4.2 standard deviation significance”. That means that the probability of getting a peak this big by chance – created by random noise in the data rather than a real particle – is only 0.0013%. That’s tiny – 13 in a million. So it seems like it must a real event rather than random noise – but nobody’s opening the champagne yet.

Read more

The pace of work has been accelerating, thanks in part to recent advances in microfluidic technologies, which allow scientists to coordinate the movements of minuscule cellular components. Research groups have already determined ways of sculpting cell-like blobs into desired shapes; of creating rudimentary versions of cellular metabolism; and of transplanting hand-crafted genomes into living cells. But bringing all these elements together remains a challenge.


Built from the bottom up, synthetic cells and other creations are starting to come together and could soon test the boundaries of life.

Read more

Amid the high speed cosmic rays raining down on us from the depths of space are a handful of antimatter particles called positrons.

Astronomers think that Earth is showered by these ‘anti-electrons’ because of pulsars, but there’s a weird catch – there are more of these particles coming at us than there should be. And now, thanks to a new study, we might finally get some answers.

Cosmic rays are incredibly fast particles, since they’re being shot down from space at high energies. Positrons make up a small percent of these super speedy particles, but nobody is entirely sure where or how they’re made.

Read more