Menu

Blog

Page 97

Oct 15, 2024

DNA-like geometric structure discovered in space-time

Posted by in categories: biotech/medical, quantum physics

An international team of scientists, composed of researchers from the Complutense University of Madrid, Saint Louis University’s Madrid campus, and the University of California, has proposed a new theory suggesting that spacetime could be made up of “entangled virtual bosons”, similar to the double helix of DNA. This finding, which could have significant implications for the unification of gravity and electromagnetism, was recently published in the journal General Relativity and Gravity.

The research was led by Professor Robert Monjo, who holds a PhD in physics and mathematics from Saint Louis University’s Madrid campus, in collaboration with Professor Rutwig Campoamor-Stursberg, head of the Department of Algebra, Geometry, and Topology at the Complutense University of Madrid, and researcher Álvaro Rodríguez-Abella from the University of California, Los Angeles. According to the authors, their work represents an important step forward in understanding the true nature of spacetime. Monjo states: Up until now, there has been a significant gap between gravity and the other forces of nature, but with this study, we have found a link that could unite them.

One of the key aspects of this study lies in the extension of the idea of “color” symmetry—a concept from quantum chromodynamics—applied to gravity. This approach could allow gravity and electromagnetism to be interpreted as manifestations of a more general theory. Symmetries, defined as invariances of observed quantities under different transformations, are fundamental to understanding modern physics. In this case, the researchers have generalized these symmetries to propose what they call “colored gravity”, a theory that expands on Einstein’s ideas about gravity.

Oct 15, 2024

Human cells communicate with each other through RNA

Posted by in category: biotech/medical

RNA facilitates cell-to-cell communication through vesicles, influencing biological processes across species.

Oct 15, 2024

Hunter’s supermoon, a comet, and Orionids meteors are sharing the sky this week

Posted by in categories: particle physics, space

This week, the October sky is treating us to a brilliant display that you won’t want to miss — the Hunter’s supermoon, a rare comet, and the Orionids meteor shower.

Comet C/2023 A3 Tsuchinshan-ATLAS is a rare comet making its journey past Earth, offering a unique opportunity to witness its tail of icy particles glistening against the dark canvas of space.

In addition, this week features the biggest supermoon of the year, Hunter’s supermoon, which will illuminate the night with a breathtaking orangish glow.

Oct 15, 2024

Keynote: Yann LeCun, “Human-Level AI”

Posted by in categories: media & arts, robotics/AI

There are four essential characteristics of human intelligence that current AI systems donft possess: reasoning, planning, persistent memory, and understanding the physical world. Once we have systems with such capabilities, it will still take a while before we bring them up to human level.

Oct 15, 2024

Van der Waals Stacking Enables Entangled Photons, Potentially Shrinking Quantum Computing Components by 1,000 Times

Posted by in categories: computing, quantum physics

Researchers used ultra-thin NbOCl₂ to generate entangled photon pairs for quantum computing, potentially shrinking components.

Oct 15, 2024

How to Prevent Another Europa Clipper Transistor Panic

Posted by in categories: computing, space travel

4 technologies that can radiation-harden future spacecraft electronics.

Oct 15, 2024

Earth’s Oldest Living Organisms Discovered Trapped in 2-Billion-Year-Old Rock

Posted by in categories: alien life, evolution

Scientists found living microbes in a 2-billion-year-old rock in South Africa, providing insights into early life on Earth and potentially aiding the search for life on Mars.

Researchers have discovered pockets of living microbes within a sealed fracture of a 2-billion-year-old rock from the Bushveld Igneous Complex in South Africa, an area known for its rich ore deposits. This is the oldest example of living microbes found within ancient rock to date.

To confirm that the microbes were indigenous to the ancient core sample and not caused by contamination during the retrieval and study process, the research team refined a technique they previously developed involving three types of imaging – infrared spectroscopy, electron microscopy, and fluorescent microscopy. These microbes could provide novel insights into the early evolution of life, and aid the search for extraterrestrial life in similarly aged rock samples brought back from Mars.

Oct 15, 2024

Compact ‘Gene Scissors’ enable Effective Genome Editing, may offer Future Treatment of High Cholesterol Gene Defect

Posted by in categories: bioengineering, biotech/medical, genetics, information science, robotics/AI

CRISPR-Cas is used broadly in research and medicine to edit, insert, delete or regulate genes in organisms. TnpB is an ancestor of this well-known “gene scissors” but is much smaller and thus easier to transport into cells.

Using protein engineering and AI algorithms, University of Zurich researchers have now enhanced TnpB capabilities to make DNA editing more efficient and versatile, paving the way for treating a genetic defect for high cholesterol in the future. The work has been published in Nature Methods.

CRISPR-Cas systems, which consist of protein and RNA components, were originally developed as a natural defense mechanism of bacteria to fend off intruding viruses. Over the last decade, re-engineering these so-called “gene scissors” has revolutionized genetic engineering in science and medicine.

Oct 15, 2024

Dual-species atomic arrays show promise for quantum error correction

Posted by in categories: computing, particle physics, quantum physics

A study in Nature Physics has realized a dual-species Rydberg array combining rubidium (Rb) and cesium (Cs) atoms to enhance quantum computing and its applications.

Oct 15, 2024

Low Gravity in Space Travel found to Weaken and Disrupt Normal Rhythm in Heart Muscle Cells

Posted by in categories: bioengineering, biotech/medical, life extension

Johns Hopkins Medicine scientists who arranged for 48 human bioengineered heart tissue samples to spend 30 days at the International Space Station report evidence that the low gravity conditions in space weakened the tissues and disrupted their normal rhythmic beats when compared to Earth-bound samples from the same source.

The scientists said the heart tissues “really don’t fare well in space,” and over time, the tissues aboard the space station beat about half as strongly as tissues from the same source kept on Earth.

The findings, they say, expand scientists’ knowledge of low gravity’s potential effects on astronauts’ survival and health during long space missions, and they may serve as models for studying heart muscle aging and therapeutics on Earth.

Page 97 of 11,947First949596979899100101Last