Toggle light / dark theme

Brain-computer interfaces have managed some amazing feats: allowing paralyzed people to type words and move a robot using only their minds, to name two examples. Brown University neuroengineering professor Arto Nurmikko has had a hand in some of those developments, but even he says the technology is at only a rudimentary stage—the equivalent of the computer understanding the brain’s intention to bend a single finger.

“We’re trying to go from the bending-of-the-finger paradigm to tying shoe laces and even to the concert pianist level. That requires lots more spatial and temporal resolution from an electronic brain interface,” Nurmikko says. His team is hoping that kind of resolution will come along with the transition from a single, hard wired neural implant to a thousand or more speck-size neural implants that wirelessly communicate with computers outside the brain. At the IEEE Custom Integrated Circuits Conference, engineers from Brown University, Qualcomm, and the University of California San Diego presented the final part of a communications scheme for these implants. It allows bidirectional communication between the implants and an external device with an uplink rate of 10 megabits per second and a downlink rate of 1 Mb/s.

“We believe that we are the first group to realize wireless power transfer and megabits per second communications” in a neural implant, says Wing Ching (Vincent) Leung, technical director at the Qualcomm Institute Circuits Lab at UC San Diego.

Read more

In hospitals, where many people are treated for life-threatening illnesses, having quality time with your doctor can be the difference between life and death.

However, physicians are often busy, seeing dozens of patients each day. So, then, how can we get more time with them? A.I., says physician and author Eric Topol. In this video, he explains how machine intelligence can free up doctors’ time while they go through their rounds.

Read more

To answer the iconic question “Are We Alone?”, scientists around the world are also attempting to understand the origin of life. There are many pieces to the puzzle of how life began and many ways to put them together into a big picture. Some of the pieces are firmly established by the laws of chemistry and physics. Others are conjectures about what Earth was like four billion years ago, based on extrapolations of what we know from observing Earth today. However, there are still major gaps in our knowledge and these are necessarily filled in by best guesses.

We invited talented scientists to discuss their different opinions about the origin of life and the site of life’s origin. Most of them will agree that liquid water was necessary, but if we had a time machine and went back in time, would we find life first in a hydrothermal submarine setting in sea water or a fresh water site associated with emerging land masses?

Biologist David Deamer, a Research Professor of Biomolecular Engineering at the University of California, Santa Cruz, and multi-disciplinary scientist Bruce Damer, Associate Researcher in the Department of Biomolecular Engineering at UC Santa Cruz, will describe their most recent work, which infers that hydrothermal pools are the most plausible site for the origin of life. Both biologists have been collaborating since 2016 on a full conception of the Terrestrial Origin of Life Hypothesis.

Lynn Rothschild, Senior Scientist at NASA’s Ames Research Center and Adjunct Professor of Molecular Biology, Cell Biology, and Biochemistry at Brown University, who is an astrobiologist/ synthetic biologist specializing in molecular approaches to evolution, particularly in microbes and the application of synthetic biology to NASA’s missions, will provide an evolutionary biologist’s perspective on the subject.

This unlikely story begins back in the 1960s, when Isaacson was a doctoral student and got interested in one of Albert Einstein’s predictions.

In 1916, Einstein theorized that any time two massive objects crash together, shock waves should move through the very fabric of the universe. These gravitational waves through space and time are like the ripples you see in water when you toss in a pebble.

“For my thesis, I showed how gravitational waves behave like other kinds of waves, like light and radar, X-rays,” Isaacson says.

Read more

Researchers develop new laser microscope that could be ‘revolutionary’ for treatment of diseases such as skin cancer. University of British Columbia researchers have developed a specialized microscope that has the potential ability to both diagnose diseases that include skin cancer and perform incredibly precise surgery – all without cutting skin.

University of British Columbia researchers have developed a specialized microscope that has the potential ability to both diagnose diseases that include skin cancer and perform incredibly precise surgery – all without cutting skin.

The researchers describe the technology in a study published today in Science Advances. “Our technology allows us to scan tissue quickly, and when we see a suspicious or abnormal cell structure, we can perform ultra-precise surgery and selectively treat the unwanted or diseased structure within the tissue – without cutting into the skin,” said Yimei Huang, co-lead author of the study and a former postdoctoral fellow at the department of dermatology and skin science at UBC and BC Cancer.

Read more