Toggle light / dark theme

Bitnation is growing up.


đŸ”„ đŸ”„ đŸ”„ NEW RELEASE: #BITNATION JURISDICTION v. 1.4.0 for Android and iOS đŸ€© đŸ„ł đŸ„°

The 1.4.0 release has been a crazy road! After the 1.3.4 release, we thought “this app somehow does not say: ”I’m a virtual nation” or ”I’m a blockchain jurisdiction”, but rather we thought it looked more like a confused web3 app which didn’t really know its purpose.

Hence we went back to the drawing board, to put the governance functions in the very center of the user experience. The result is 3 bottom menu main categories, including TOWNHALL, NATIONS and the brand new GOVMARKET. All other functions moved to a new side menu.

One of the vast untapped potentials of medicine is the access to imaging equipment. A billion people have difficulty getting access to an x-ray, and that says nothing about access to MRIs or CAT scans. Over the past few years, [Jean Rintoul] has been working on a low-cost way to image the inside of a human body using nothing more than a few electrodes. It can be done cheaply and easily, and it’s one of the most innovative ways of bringing medical imaging to the masses. Now, this is a crowdfunding project, aiming to provide safe, accessible medical imaging to everyone.


It’s called Spectra, and uses electrical impedance tomography to image the inside of a chest cavity, the dielectric spectrum of a bone, or the interior of a strawberry. Spectra does this by wrapping an electrode around a part of the body and sending out small AC currents. These small currents are reconstructed using tomographic techniques, imaging a cross-section of a body.

[Jean] gave a talk about Spectra at last year’s Hackaday Superconference, and if you want to look at the forefront of affordable medical technology, you needn’t look any further. Simply by sending an AC wave of around 10kHz through a body, software can reconstruct the internals. Everything from lung volume to muscle and fat mass to cancers can be detected with this equipment. You still need a tech or MD to interpret the data, but this is a great way to bring medical imaging technology to the people who need it.

Read more

We already recover power from the wheels of some cars when slowing. Kinetic energy recovery systems (KERS) have been used in Formula One racing to store energy in a flywheel when braking, and then push it back to the wheels later for a boost in speed. Electric cars often use regenerative braking, which converts the speed of the wheels into electrical power to recharge the battery. These systems are a great way to increase efficiency, but like everything in the Universe, they are not 100 per cent efficient. Sadly, the laws of physics prohibit the existence of true perpetual motion, so it’s the best we can do.

Read more

Electrochemical energy systems—processes by which electrical energy is converted to chemical energy—are at the heart of establishing more efficient generation and storage of intermittent energy from renewable sources in fuel cells and batteries.

The powerhouse substances known as catalysts, which are used to accelerate chemical reactions, are key players in these systems. The size and efficiency of fuel cells, for example, could greatly benefit from using high-performance catalysts.

Producing better catalysts is easier said than done, however. A ’s usefulness is partially based on the amount and quality of its active sites, due to the sites’ specific geometry and electronic properties. Engineering these sites can be an arduous, inefficient process.

Read more

A common species of freshwater green algae is capable of removing certain endocrine disrupting chemicals (EDCs) from wastewater, according to new research from the Desert Research Institute (DRI) in Las Vegas.

EDCs are natural hormones and can also be found in many plastics and pharmaceuticals. They are known to be harmful to wildlife, and to humans in large concentrations, resulting in such as lowered fertility and increased incidence of certain cancers. They have been found in trace amounts (parts per trillion to parts per billion) in treated wastewater, and also have been detected in collected from Lake Mead.

In a new study published in the journal Environmental Pollution, DRI researchers Xuelian Bai, Ph.D., and Kumud Acharya, Ph.D., explore the potential for use of a species of freshwater green called Nannochloris to remove EDCs from treated wastewater.

Read more

European scientists looking for some of the oldest ice on the planet have homed in on a particular spot in Antarctica, where they will drill more than 1.5 miles (2.7 kilometers) below the surface of the ice.

Over the next five years, the “Beyond EPICA-Oldest Ice” mission will work at a remote location known as “Little Dome C” to start drilling for ice up to 1.5 million years old, the team announced today (April 9) at the meeting of the European Geosciences Union in Vienna, Austria.

“Ice cores are unique for geosciences because they are an archive of the paleo-atmosphere,” said Beyond EPICA’s coordinator Olaf Eisen of the Alfred Wegener Institute in Germany. [Antarctica: The Ice-Covered Bottom of the World (Photos)].

Read more