Toggle light / dark theme

A gravitational wave generating device comprising an energizing means such as magnetrons, which act upon energizable elements such as film bulk acoustic resonators or FBARs. A computer that controls the magnetrons’ phase. A gravitational wave generation device that exhibits directivity and forms a gravitational-wave beam. The utilization of a medium in which the gravitational wave speed is reduced in order to effect refraction of the gravitational wave and be a gravitational wave lens. A gravitational wave generator device that can be directed in order to propel an object by its momentum or by changing the gravitational field nearby the object to urge it in a preferred direction and be a propulsion means.

Read more

Future neutrino experiments may provide tomographic scans of Earth’s interior by viewing solar neutrinos that pass through our planet’s layers.

The Sun showers Earth with neutrinos, but this “glow” doesn’t dim when the Sun goes down. At night, solar neutrinos penetrate Earth, impinging detectors from below. Like x rays in a medical scanner, these planet-traversing neutrinos might offer information about the material they pass through. New theoretical calculations show that future experiments, such as the Deep Underground Neutrino Experiment (DUNE), could characterize the different layers inside Earth with neutrino-based tomography.

Read more

Researchers have discovered that the human body’s 3 trillion cells aren’t clones of a single DNA sequence, as is widely believed. Instead, the cells of the human body contain a plethora of altered DNA, called mutations. These multiply to produce patches of tissue, called “somatic clones,” inside the ‘normal’ tissue. The scientific term for this phenomenon is mosaicism.

Read more