Menu

Blog

Page 92

Nov 9, 2024

Breaking Atomic Barriers: The Race To Discover the World’s Heaviest Element

Posted by in categories: chemistry, particle physics

Advancements in nuclear physics suggest the possibility of discovering stable, superheavy elements.

Researchers have found an alternative way to produce atoms of the superheavy element livermorium. The new method opens up the possibility of creating another element that could be the heaviest in the world so far: number 120.

The search for new elements is driven by the goal of finding versions that are stable enough to exist beyond a fleeting moment. In nuclear physics, there is a concept known as the “island of stability”—a hypothetical region in the upper reaches of the periodic table where as-yet-undiscovered superheavy elements could potentially last longer than just a few seconds. Scientists are working to explore how far the stability of atomic nuclei can extend.

Nov 9, 2024

Researchers Develop World’s First Non-Electric Touchpad

Posted by in categories: biotech/medical, robotics/AI

Researchers at Tampere University have created the world’s first soft touchpad capable of detecting the force, area, and location of contact without the need for electricity. This innovative device operates using pneumatic channels, making it suitable for environments like MRI machines and other settings where electronic devices are impractical. The technology could also be advantageous for applications in soft robotics and rehabilitation aids.

Researchers at Tampere University have developed the world’s first soft touchpad that is able to sense the force, area, and location of contact without electricity. That has traditionally required electronic sensors, but the newly developed touchpad does not need electricity as it uses pneumatic channels embedded in the device for detection.

Made entirely of soft silicone, the device contains 32 channels that adapt to touch, each only a few hundred micrometers wide. In addition to detecting the force, area, and location of touch, the device is precise enough to recognize handwritten letters on its surface and it can even distinguish multiple simultaneous touches.

Nov 9, 2024

Five Eyes tell tech startups to take infosec seriously

Posted by in categories: robotics/AI, security, transportation

Australia has served up a Secure Innovation Placemat [PDF].

The wide variance in the documents is by design: each Five Eyes nation chose its own approach, although the campaign is a coordinated effort that is billed as “consistent and consolidated advice reflecting both the globalized and interconnected tech startup ecosystem as well as the global nature of the security threats startups face.” And everybody uses placemats.

Whether this advice will break through the “move fast and break things” culture that many startups nurture is anyone’s guess. The Register has reported on security and resilience troubles in the early years at Uber and Lyft, GitLab, and at OpenAI.

Nov 9, 2024

New broadband UV frequency combs offer unprecedented spectral resolution

Posted by in category: futurism

Researchers have developed a new ultrafast laser platform that generates ultra-broadband ultraviolet (UV) frequency combs with an unprecedented one million comb lines, providing exceptional spectral resolution. The new approach, which also produces extremely accurate and stable frequencies, could enhance high-resolution atomic and molecular spectroscopy.

Nov 9, 2024

Study introduces novel conservation law that operates down to the subcycle level during strong-field ionization

Posted by in categories: law, physics

The conservation law is a fundamental tool that significantly aids our quest to understand the world, playing a crucial role across various scientific disciplines. Particularly in strong-field physics, these laws enhance our comprehension of atomic and molecular structures as well as the ultrafast dynamics of electrons.

Nov 9, 2024

Stochastic thermodynamics may be key to understanding energy costs of computation

Posted by in category: computing

Two systems exist in thermal equilibrium if no heat passes between them. Computers, which consume energy and give off heat as they process information, operate far from thermal equilibrium. Were they to stop consuming energy—say you let your laptop discharge completely—they would stop functioning.

Nov 9, 2024

Polymer’s long spin relaxation time helps researchers gain spintronic insights

Posted by in category: particle physics

Electrons spin even without an electric charge and this motion in condensed matter constitutes spin current, which is attracting a great deal of attention for next-generation technology such as memory devices. An Osaka Metropolitan University-led research group has been able to gain further insight into this important topic in the field of spintronics.

Nov 9, 2024

Quantum simulator could help uncover materials for high-performance electronics

Posted by in categories: computing, particle physics, quantum physics

Quantum computers hold the promise to emulate complex materials, helping researchers better understand the physical properties that arise from interacting atoms and electrons. This may one day lead to the discovery or design of better semiconductors, insulators, or superconductors that could be used to make ever faster, more powerful, and more energy-efficient electronics.

Nov 9, 2024

AI training method can drastically shorten time for calculations in quantum mechanics

Posted by in categories: chemistry, quantum physics, robotics/AI

The close relationship between AI and highly complicated scientific computing can be seen in the fact that both the 2024 Nobel Prizes in Physics and Chemistry were awarded to scientists for devising AI for their respective fields of study. KAIST researchers have now succeeded in dramatically shortening the calculation time of highly sophisticated quantum mechanical computer simulations by predicting atomic-level chemical bonding information distributed in 3D space using a novel approach to teach AI.

Nov 9, 2024

Persistent flat band splitting and strong selective band renormalization in a kagome magnet thin film

Posted by in category: futurism

Spectroscopic study on a kagome magnet thin film uncovers the local-moment nature of the magnetism in the presence of topological flat bands, as well as a strong spin-and orbital-selective electronic correlation effect.

Page 92 of 12,055First8990919293949596Last