Adding to the largest astronomical data set ever assembled online, the Pan-STARRS telescope has posted 1.6 petabytes of data.
Future neutrino experiments may provide tomographic scans of Earth’s interior by viewing solar neutrinos that pass through our planet’s layers.
The Sun showers Earth with neutrinos, but this “glow” doesn’t dim when the Sun goes down. At night, solar neutrinos penetrate Earth, impinging detectors from below. Like x rays in a medical scanner, these planet-traversing neutrinos might offer information about the material they pass through. New theoretical calculations show that future experiments, such as the Deep Underground Neutrino Experiment (DUNE), could characterize the different layers inside Earth with neutrino-based tomography.
Researchers have discovered that the human body’s 3 trillion cells aren’t clones of a single DNA sequence, as is widely believed. Instead, the cells of the human body contain a plethora of altered DNA, called mutations. These multiply to produce patches of tissue, called “somatic clones,” inside the ‘normal’ tissue. The scientific term for this phenomenon is mosaicism.
For centuries biologists have identified new species at a painstakingly slow pace, describing specimens’ physical features and other defining traits, and often trying to fit a species into the tree of life before naming and publishing it. Now, they have begun to determine whether a specimen is likely a novel species in hours—and will soon do so at a cost of pennies. It’s a revolution driven by short stretches of DNA—dubbed barcodes in a nod to the familiar product identifiers—that vary just enough to provide species-distinguishing markers, combined with fast, cheap DNA sequencers.
As massive global effort launches, portable DNA sequencers also allow species identification in the field.