Toggle light / dark theme

AI is shaking up industries — and software engineering is no exception.

In a leaked recording of a June fireside chat obtained by Business Insider, Amazon Web Services CEO Matt Garman reportedly told employees that AI is changing what being a software engineer means —and essentially changes the job description.

“If you go forward 24 months from now, or some amount of time — I can’t exactly predict where it is — it’s possible that most developers are not coding,” Garman said, adding later that the developer role would look different next year compared to 2020.

What if our lifespan could be extended beyond its natural limits? Recently, scientists have made a significant leap towards this very real possibility with the discovery and study of an important longevity gene.

This gene has shown promise in promoting cellular repair and reducing the effects of aging, generating excitement in the scientific community about new methods for extending healthy lives, not just longer lives.

As we learn more about the mechanisms behind this particular longevity gene, we may soon uncover new strategies that could revolutionize how we approach human aging and lifespan, ultimately changing the way we live.

Research that began with a patient-driven discovery in the lab of YSM’s Carrie Lucas, PhD, could help in fighting autoimmune diseases.

Writing in Nature Immunology, Lucas and colleagues identify a signaling molecule found in immune cells that could be a target for future treatments.


A medical mystery served as the genesis for a Yale-led study that has promising implications for treating a range of autoimmune diseases.

A young girl entered the clinic suffering from blood cell abnormalities, difficulty breathing, and later, diarrhea. She also had been diagnosed with recurrent infections due to low levels of antibody production. Her doctors treated her with corticosteroids to reduce her lung and gut inflammation and immunoglobulin replacement therapy to restore her antibody levels.

Dark states are quantum states in which a system does not interact with external fields, such as light (i.e., photons) or electromagnetic fields. These states, which generally occur due to interferences between the pathways through which a system interacts with an external field, are undetectable using spectroscopic techniques.

Integrated photonic circuits operating at room temperature combined with optical nonlinear effects could revolutionize both classical and quantum signal processing. Scientists from the Faculty of Physics at the University of Warsaw, in collaboration with other institutions from Poland as well as Italy, Iceland, and Australia, have demonstrated the creation of perovskite crystals with predefined shapes that can serve in nonlinear photonics as waveguides, couplers, splitters, and modulators.