The Goldilocks coat.
Scientists and non-scientists alike have long been dreaming of elements with mighty properties. Perhaps the fictional materials they have conjured up are not as far from reality as it may at first seem.
The periodic table of elements has become one of the defining symbols of chemistry. It is, of course, a handy chart of the building blocks that make up absolutely anything and everything around us, but it is also the outcome of the work of a huge number of scientists, which led to the current understanding of the elements’ atomic structure and behaviour. For those who like organization, patterns and chemistry, what’s not to love?
Gorilla genome sequenced
Posted in biotech/medical, evolution
The assembly of the gorilla genome was announced today, March 7, by a multi-national group of researchers. The gorilla is the last genus of the living great apes to have its genome decoded. While confirming that our closest relative is the chimpanzee, the team showed that much of the human genome more closely resembles the gorilla than it does the chimpanzee genome.
This is the first time scientists have been able to compare the genomes of all four living great apes: humans, chimpanzees, gorillas and orangutans. This study provides a new perspective on human origins and is an important resource for research into human evolution and biology, as well as for gorilla biology and conservation.
Researchers at the Wellcome Trust Sanger Institute in the United Kingdom lead the study, with contributions from several other institutions, including the University of Washington.
Outdoor sport brand Goldwin and Japanese company Spiber developed the Moon Parka, a ski jacket made from synthetic spider silk.
The parka was originally to be released by The North Face, marketed by Goldwin, in 2016, but its release was postponed. Back then, Spiber’s QMONOS was said to be the world’s first successfully-produced synthetic spider silk material (since then, other brands have succeeded in making products with this material, like Bolt Threads and Adidas).
Currently, most sports apparel is made from synthetic materials such as polyester and nylon. These materials are made using petroleum, and consume massive amounts of energy to produce.
While intense magnetic fields are naturally generated by neutron stars, researchers have been striving to achieve similar results for many years. UC San Diego mechanical and aerospace engineering graduate student Tao Wang recently demonstrated how an extremely strong magnetic field, similar to that on the surface of a neutron star, can be not only generated but also detected using an X-ray laser inside a solid material.
Wang carried out his research with the help of simulations conducted on the Comet supercomputer at the San Diego Supercomputer Center (SDSC) as well as Stampede and Stampede2 at the Texas Advanced Computing Center (TACC). All resources are part of a National Science Foundation program called the Extreme Science and Engineering Discovery Environment (XSEDE).
“Wang’s findings were critical to our recently published study’s overall goal of developing a fundamental understanding of how multiple laser beams of extreme intensity interact with matter,” said Alex Arefiev, a professor of mechanical and aerospace engineering at the UC San Diego Jacobs School of Engineering.
They plan to use this robot in combat situation in the future.
All the video content used in this clip come from the U.S Department of Defense.
This page is based on the Marvel Comics.
Please take note that most of the information here does not relate to the Marvel Cinematic Universe.
Occasionally we come across a piece of information which reminds us that, while flying cars are still nowhere to be found, we’re definitely living in the future. Usually it’s about some new application of artificial intelligence, or maybe another success in the rapidly developing field of private spaceflight. But sometimes it’s when you look at a website and say to yourself: “Oh cool, they have 1.5kW electromagnetic accelerators in stock.”
Arcflash Labs, a partnership between [David Wirth] and [Jason Murray], have put their EMG-01A Gauss gun up for sale for anyone who’s brave enough and willing to put down $1,000 USD on what’s essentially a high-tech BB gun. The creators claim it obtains an efficiency of 6.5% out of its RC-style 6S LiPo battery pack, which allows it to fire over 100 rounds before needing to be recharged. Firing 4.6g steel projectiles at a rather leisurely 45 m/s, this futuristic weapon would be more of a match for tin cans than invading alien forces, but at least you’ll be blasting those cans from a position of supreme technical superiority.
The EMG-01A builds on the work of the team’s previous experiments, such as the semi-automatic railgun we covered last year. They’ve made the device much smaller and lighter than their previous guns, as well as worked on making them safer and more reliable. That said, the page for the EMG-01A has a number of warnings and caveats that you won’t see on the back of a Red Ryder BB gun box; it’s certainly not a toy, and anyone who takes ownership of one needs to be respectful of the responsibility they’re taking on.
Of all the crazy garage-built weapons I’ve ever come across, this one from YouTuber/tinkerer Alex Smyth is definitely one of the craziest. Aside from the fact that it looks like a prop that was stolen from the set of District 9, Smyth’s “phased plasma” gun doesn’t just fire normal projectiles. It’s actually designed to fire rounds filled with ionized plasma, which in turn should, at least in theory, explode on impact.
If you’re unfamiliar, a railgun is a type of weapon that uses electricity instead of gunpowder to fire a projectile. Leveraging a phenomenon called the Lorentz Force, rail guns work by delivering a high power electric pulse to a pair of conductive rails, which in turn generates a magnetic field and rapidly accelerates the bullet situated between them.
Smyth’s gun is a bit different, though. Rather than using straight rails, his build features a pair of rails that are twisted to form a double helix. According to Smyth, this gives the projectile some spin and extra stability, just like the rifling on a firearm barrel would provide for a normal bullet. The only difference is that, in lieu of a regular metal projectile, Smyth’s gun is designed to fire glass vacuum tubes filled with neon gas. In theory, the electromagnetic fields created by the rails will ionize the gas to create plasma, which will be released when the glass projectile breaks.