Toggle light / dark theme

Andriy Zakutayev knows the odds of a scientist stumbling across a new nitride mineral are about the same as a ship happening upon a previously undiscovered landmass.

“If you find any in nature, it’s probably in a meteorite,” said Zakutayev, a scientist at the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL).

Formed when metallic elements combine with nitrogen, nitrides can possess unique properties with spanning from semiconductors to industrial coatings. One nitride semiconductor served as the cornerstone of a Nobel Prize-winning technology for light-emitting diodes (LEDs). But before nitrides can be put to use, they first must be discovered—and now, researchers have a map to guide them.

Gunsalus agrees that the Sato case highlights some of the problems with misconduct investigations, and says that if shortcomings emerge, further reviews may be needed. She suggests institutional panels should include external members and that officials should also use a standardized checklist to strengthen their processes. “There should be some way for journals, funders, patients and others to be assured of the credibility and thoroughness of university reviews,” says Gunsalus.


Detailed analysis of misconduct investigations into huge research fraud suggests institutional probes aren’t rigorous enough.

A key challenge for robotics researchers is developing systems that can interact with humans and their surrounding environment in situations that involve varying degrees of uncertainty. In fact, while humans can continuously learn from their experiences and perceive their body as a whole as they interact with the world, robots do not yet have these capabilities.

Researchers at the Technical University of Munich have recently carried out an ambitious study in which they tried to apply “active inference,” a theoretical construct that describes the ability to unite perception and action, to a humanoid robot. Their study is part of a broader EU-funded project called SELFCEPTION, which bridges robotics and with the aim of developing more perceptive robots.

“The original research question that triggered this work was to provide and artificial agents in general with the capacity to perceive their body as humans do,” Pablo Lanillos, one of the researchers who carried out the study, told TechXplore. “The main goal was to improve their capabilities to interact under uncertainty. Under the umbrella of the Selfception.eu Marie Skłodowska-Curie project we initially defined a roadmap to include some characteristics of human perception and action into robots.”

Rice University’s solar-powered approach for purifying salt water with sunlight and nanoparticles is even more efficient than its creators first believed.

Researchers in Rice’s Laboratory for Nanophotonics (LANP) this week showed they could boost the efficiency of their solar-powered desalination system by more than 50% simply by adding inexpensive plastic lenses to concentrate sunlight into “hot spots.” The results are available online in the Proceedings of the National Academy of Sciences.

“The typical way to boost performance in solar-driven systems is to add solar concentrators and bring in more light,” said Pratiksha Dongare, a graduate student in applied physics at Rice’s Brown School of Engineering and co-lead author of the paper. “The big difference here is that we’re using the same amount of light. We’ve shown it’s possible to inexpensively redistribute that power and dramatically increase the rate of purified production.”