Toggle light / dark theme

Putting 50 billion transistors into a microchip the size of a fingernail is a feat that requires manufacturing methods of nanometer level precision—layering of thin films, then etching, depositing, or using photolithography to create the patterns of semiconductor, insulator, metal, and other materials that make up the tiny working devices within the chip.

The process relies heavily on solvents that carry and deposit materials in each layer—solvents that can be difficult to handle and toxic to the environment.

Now researchers led by Fiorenzo Omenetto, Frank C. Doble Professor of Engineering at Tufts, have developed a nanomanufacturing approach that uses water as the primary solvent, making it more environmentally compatible and opening the door to the development of devices that combine inorganic and biological materials.

One would not be wrong to note that Toyota’s hydrogen engine exhibits enormous performance characteristics. This engine has the capacity to develop one hundred and fourteen horsepower and one hundred and forty Newton meters of torque and, as such, can be used in different car types.

The power-to-weight ratio is also impressive, at 125 horsepower per ton and CO2 emissions of 144 g/km, the thermal efficiency of the engine is 44%, far higher than any traditional gasoline engine. This high efficiency concerns better fuel economy and fewer emissions. The fueling system can also be said to be one of the peculiarities of the hydrogen engine that Toyota uses.

A new NASA-funded study has revealed for the first time that the airflow in supersonic combusting jet engines can be controlled by an optical sensor.

The finding can lead to more efficient stabilization of hypersonic jet aircraft, according to the study carried out by the researchers at the University of Virginia, School of Engineering and Applied Science.

The research allows operators to control airflow at the speed of light when a ‘shock train’ occurs. A shock train is a condition that precedes engine failure within a scramjet engine.

Imagine a crew of astronauts headed to Mars. About 140 million miles away from Earth, they discover their spacecraft has a cracked O-ring. But instead of relying on a dwindling cache of spare parts, what if they could simply fabricate any part they needed on demand?

A team of Berkeley researchers, led by Ph.D. student Taylor Waddell, may have taken a giant leap toward making this option a reality. On June 8, they sent their 3D printing technology to space for the first time as part of the Virgin Galactic 7 mission.

Their next-generation microgravity printer—dubbed SpaceCAL—spent 140 seconds in suborbital space while aboard the VSS Unity space plane. In that short time span, it autonomously printed and post-processed a total of four test parts, including space shuttles and benchy figurines from a liquid plastic called PEGDA.