Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Pretrained jet foundation model successfully utilized for tau reconstruction

Simulating data in particle physics is expensive and not perfectly accurate. To get around this, researchers are now exploring the use of foundation models—large AI models trained in a general, task-agnostic way on large amounts of data.

Just like how language models can be pretrained on the full dataset of internet text before being fine-tuned for specific tasks, these models can learn from large datasets of particle jets, even without labels.

After the pretraining, they can be fine-tuned to solve specific problems using much less data than traditional approaches.

Black-hole solutions in quantum gravity with Vilkovisky-DeWitt effective action

Physicists propose that calculations of certain aspects of quantum gravity can currently be done even without a full theory of quantum gravity itself. Basically, they work backwards from the fact that quantum gravity on the macro scale must conform to Einstein’s relativity theories. This approach is effective until the small scale of a black hole singularity is close.

(See my Comment below for an article link to POPULAR MECHANICS that discussed the scientific article in an accessible manner.


We study new black-hole solutions in quantum gravity. We use the Vilkovisky-DeWitt unique effective action to obtain quantum gravitational corrections to Einstein’s equations. In full analogy to previous work done for quadratic gravity, we find new black-hole–like solutions. We show that these new solutions exist close to the horizon and in the far-field limit.

When stem cells feel the squeeze, they start building bone

In a discovery that could reshape approaches to regenerative medicine and bone repair, researchers have found that human stem cells can be prompted to begin turning into bone cells simply by squeezing through narrow spaces.

The study suggests that the physical act of moving through tight, confining spaces, like those between tissues, can influence how stem cells develop. This could open new possibilities for engineering materials and therapies by guiding using physical, rather than chemical, signals.

The research was led by Assistant Professor Andrew Holle from the Department of Biomedical Engineering in the College of Design and Engineering at the National University of Singapore (NUS), and the Mechanobiology Institute (MBI) at NUS, and was published on 8 May 2025 in the journal Advanced Science.

Jack Dorsey launches a WhatsApp messaging rival built on Bluetooth

CEO Jack Dorsey spent the weekend building Bitchat, a new decentralized, peer-to-peer messaging app that works entirely over Bluetooth mesh networks, with no internet, central servers, phone numbers or emails required.

The Twitter co-founder announced Sunday that the beta version is live on TestFlight, with a full white paper available on GitHub.


Block CEO Jack Dorsey has launched Bitchat, a new peer-to-peer messaging app that works entirely over Bluetooth mesh networks.

Elusive romance of top-quark pairs observed at the LHC

An unforeseen feature in proton-proton collisions previously observed by the CMS experiment at CERN’s Large Hadron Collider (LHC) has now been confirmed by its sister experiment ATLAS. The result, reported yesterday at the European Physical Society’s High-Energy Physics conference in Marseille, suggests that top quarks – the heaviest and shortest-lived of all the elementary particles – can momentarily pair up with their antimatter counterparts to produce a “quasi-bound-state” called toponium. Further input based on complex theoretical calculations of the strong nuclear force — called quantum chromodynamics (QCD) — will enable physicists to understand the true nature of this elusive dance.

High-energy collisions between protons at the LHC routinely produce top quark–antiquark pairs. Measuring the probability, or cross section, of this process is both an important test of the Standard Model of particle physics and a powerful way to search for the existence of new particles that are not described by the theory.

Last year, CMS researchers were analysing a large sample of top quark–antiquark production data collected from 2016 to 2018 to search for new types of Higgs bosons when they observed something unusual. The team saw a surplus of top quark–antiquark pairs, which is often considered as a smoking gun for the presence of new particles. Intriguingly, the excess appeared at the very minimum energy required to produce such a pair of top quarks. This led the team to consider an alternative hypothesis of something that had long been considered too difficult to detect at the LHC: a short-lived union of a top quark and a top antiquark.

Can psychedelic mushrooms turn back the clock? Study suggests psilocybin preserves telomere length

A compound found in psychedelic mushrooms may have antiaging properties. Researchers at Baylor College of Medicine have found that psilocybin, the active compound in psychedelic mushrooms, may extend both cellular and organismal lifespans.

The findings, published in the journal npj Aging, show that psilocybin reduced multiple hallmarks of aging in cells while also improving survival in aged mice.

“There have been a number of clinical studies that have explored the therapeutic potential of psilocybin in psychiatric conditions such as depression and anxiety; however, few studies have evaluated its impacts outside the brain,” said Dr. Louise Hecker, associate professor of medicine— at Baylor and senior author of the study.

AI reveals astrocytes play a ‘starring’ role in dynamic brain function

Long overlooked and underestimated, glial cells—non-neuronal cells that support, protect and communicate with neurons—are finally stepping into the neuroscience spotlight. A new Florida Atlantic University study highlights the surprising influence of a particular glial cell, revealing that it plays a much more active and dynamic role in brain function than previously thought.

Using sophisticated computational modeling and , researchers discovered how astrocytes, a “star” shaped glial cell, subtly—but significantly—modulate communication between neurons, especially during highly coordinated, synchronous brain activity.

“Clearly, are significantly implicated in several brain functions, making identifying their presence among neurons an appealing and important problem,” said Rodrigo Pena, Ph.D., senior author, an assistant professor of biological sciences within FAU’s Charles E. Schmidt College of Science on the John D. MacArthur Campus in Jupiter, and a member of the FAU Stiles-Nicholson Brain Institute.

Treating postoperative delirium as preventable ‘acute brain failure’: Low-cost interventions could have major impact

A new large-scale study spotlights postoperative delirium as a preventable and high-impact complication which is driven by patient frailty and surgical stress—and one that can be addressed through low-cost, evidence-based interventions.

The findings, which appear in JAMA Network Open, provide a call to action for clinicians, health systems, patients, and families to prioritize brain health throughout perioperative care.

“Postoperative delirium isn’t a minor complication—it’s analogous to acute brain failure, a medical emergency that should be recognized and addressed,” said Laurent Glance, MD, a professor of Anesthesiology and Perioperative Medicine at the University of Rochester Medical Center (URMC) and senior author of the study.