Page 8

Mar 30, 2023

OpenAI CEO responds to Jordan Peterson criticism | Sam Altman and Lex Fridman

Posted by in category: robotics/AI

Lex Fridman Podcast full episode:
Please support this podcast by checking out our sponsors:
- NetSuite: to get free product tour.
- SimpliSafe:
- ExpressVPN: to get 3 months free.

Sam Altman is the CEO of OpenAI, the company behind GPT-4, ChatGPT, DALL-E, Codex, and many other state-of-the-art AI technologies.

Continue reading “OpenAI CEO responds to Jordan Peterson criticism | Sam Altman and Lex Fridman” »

Mar 30, 2023

Experiment finds gluon mass in the proton

Posted by in category: particle physics

Nuclear physicists may have finally pinpointed where in the proton a large fraction of its mass resides. A recent experiment carried out at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility has revealed the radius of the proton’s mass that is generated by the strong force as it glues together the proton’s building block quarks. The result was recently published in Nature.

One of the biggest mysteries of the proton is the origin of its mass. It turns out that the proton’s measured mass doesn’t just come from its physical building blocks, its three so-called valence quarks.

“If you add up the Standard Model masses of the quarks in a proton, you only get a small fraction of the proton’s mass,” explained experiment co-spokesperson Sylvester Joosten, an experimental physicist at DOE’s Argonne National Laboratory.

Mar 30, 2023

Journey to the center of a black hole: Scientists discover what lies beyond the event horizon

Posted by in categories: cosmology, particle physics

Scientists relied on the holographic principle, which suggests that the two existing theories – particles and gravity – are equivalent.

Mar 30, 2023

Digging into DNA Repair with Optical Tweezer Technology

Posted by in category: biotech/medical

Combining an optical tweezer technology called C-trap that manipulates a single molecule of DNA and a novel approach, researchers were able to receive a detailed view into how cells find and repair damaged DNA.

Their findings are described in an article titled, “Single-molecule analysis of DNA-binding proteins from nuclear extracts (SMADNE),” published in Nucleic Acids Research.

In the new study, the researchers used the C-trap to investigate how different DNA repair proteins identify and bind to their respective forms of damage.

Mar 30, 2023

Archaeologists Studying an Enigmatic Stone Structure in the Saudi Arabian Desert Have Turned Up Evidence of a Neolithic Cultic Belief

Posted by in category: futurism

More than 260 fragments of animal bones have been found at the monument.

Artnet News, March 29, 2023.

Mar 30, 2023

Study reveals origin of superconductivity in nickelates

Posted by in categories: entertainment, materials

Nickelates are a material class that has excited scientists because of its recently discovered superconducting ability, and now a new study led by Cornell has changed where scientists thought this ability might originate, providing a blueprint for how more functional versions might be engineered in the future.

Superconductivity was predicted in nickel-based oxide compounds, or nickelates, more than 20 years ago, yet only realized experimentally for the first time in 2019, and only in samples that are grown as very thin, crystalline films—less than 20 nanometers thick—layered on a supporting substrate material.

Researchers worldwide have been working to better understand the microscopic details and origins of superconductivity in nickelates in an effort to create samples that successfully superconduct in macroscopic “bulk” , but have yet to be successful. This limitation led some researchers to speculate that superconductivity was not being hosted in the nickelate film, but rather at the atomic interface where the film and substrate meet.

Mar 30, 2023

Artificial Cells — The Powerhouse of the Future

Posted by in categories: bioengineering, biotech/medical

Assessing how energy-generating synthetic organelles could sustain artificial cells.

Researchers have assessed the progress and challenges in creating artificial mitochondria and chloroplasts for energy production in synthetic cells. These artificial organelles could potentially enable the development of new organisms or biomaterials. The researchers identified proteins as the most crucial components for molecular rotary machinery, proton transport, and ATP production, which serves as the cell’s primary energy currency.

Energy production in nature is the responsibility of chloroplasts and mitochondria and is crucial for fabricating sustainable, synthetic cells in the lab. Mitochondria are not only “the powerhouses of the cell,” as the middle school biology adage goes, but also one of the most complex intracellular components to replicate artificially.

Mar 30, 2023

Scientists spot a black hole 33 billion times bigger than the sun

Posted by in categories: cosmology, futurism

The ‘ultramassive’ black hole discovery has big implications for our future understanding of space.

Mar 30, 2023

Is God A Virus? | Echopraxia

Posted by in categories: alien life, mathematics, physics, supercomputing

Echopraxia is a book set in one of the most interesting sci-fi universes that I have covered on this channel. It is technically a sequel to Blindsight, but it is not necessary that you read Blindsight to understand Echopraxia is set in the late 21 century. About 14 years after man’s first contact with alien life.

This book brings up one of the most interesting concepts I’ve ever encountered in any sci-fi book ever. And that is the concept of the “Digital Universe” and God as a Virus. Now this is a concept that comes from the field of digital physics, which keep in mind is all theoretical. It is based on the premise that the universe is pure mathematics at its base, every event that occurs can be thought of as a kind of computation. This could mean that the universe is a simulation, but that is not necessary for the idea to work.

Continue reading “Is God A Virus? | Echopraxia” »

Mar 30, 2023

Discovery of a new topological phase could lead to exciting developments in nanotechnology

Posted by in categories: nanotechnology, physics

Cambridge researchers have discovered a new topological phase in a two-dimensional system, which could be used as a new platform for exploring topological physics in nanoscale devices.

Two-dimensional materials such as graphene have served as a playground for the experimental discovery and theoretical understanding of a wide range of phenomena in physics and . Beyond graphene, there are a large number 2D materials, all with different physical properties. This is promising for potential applications in nanotechnology, where a wide range of functionality can be achieved in devices by using different 2D materials or stacking combinations of different layers.

It was recently discovered that in materials such as (hBN), which are less symmetric than graphene, ferroelectricity occurs when one layer slides over the other and breaks a symmetry. Ferroelectricity is the switching of a material’s with an , which is a useful property for information processing and memory storage.

Page 8 of 8,892First56789101112Last