Toggle light / dark theme

Using data from nearly 15 million galaxies and quasars, the Dark Energy Spectroscopic Instrument (DESI) has created the most detailed 3D map of the universe ever made. A new analysis combining DESI’s observations with other major cosmic datasets suggests that dark energy, the mysterious force behind

Scientists at Princeton University have made a groundbreaking discovery in quantum materials, revealing that electron energy levels in certain systems follow a fractal pattern known as Hofstadter’s butterfly. This phenomenon was first theorized in 1976 but had never been directly observed in a re

A puzzling new type of radio signal – lasting seconds to minutes – has been linked to a binary star system featuring a white dwarf and a red dwarf. Scientists suspect these signals arise from the white dwarf’s intense magnetic field or its interaction with its companion. This discovery suggests t

A new imaging technique is helping ultra-powerful MRI scanners detect tiny differences in the brains of patients with treatment-resistant epilepsy. In a groundbreaking study, doctors at Addenbrooke’s Hospital in Cambridge used this approach to identify hidden brain lesions, allowing them to offer patients surgery that could cure their condition.

7T MRI scanners, named for their use of a 7 Tesla magnetic field, which is more than twice as strong as the 3T scanners commonly used, have previously struggled with signal blackspots in key areas of the brain. However, researchers from Cambridge and Paris have developed a technique that overcomes this issue, as detailed in a study published today (March 21) in Epilepsia.

The challenge of treating focal epilepsy.

Imagine fiber optic cables acting as vast sensor networks, detecting vibrations for everything from earthquake warnings to railway monitoring. The challenge? Processing the enormous data flow in real-time. Traditional electronic computing struggles, but researchers have merged machine learning wi

A new fMRI study reveals that babies as young as 12 months can encode memories, contradicting theories that memory formation is impossible in infancy. Instead, the inability to recall early life may stem from retrieval failures rather than memory loss. Challenging Assumptions About Infant Memory

Physicists in Germany have led experiments that show the inertia of electrons can form ‘tornadoes’ inside a quantum semimetal.

It’s almost impossible for electrons to sit still, and their motions can take on some bizarre forms. Case in point: an analysis of electron behavior in a quantum material called tantalum arsenide reveals vortices.

But the story gets weirder. These electrons aren’t spiraling in a physical place – they’re doing so in a quantum blur of possibility called momentum space. Rather than drawing a map of particles potential locations, or position space, momentum space describes their motion through their energy and direction.

The ESA’s Euclid Space Telescope has already wowed us with some fantastic images. After launching in July 2023, the telescope delivered some stunning first images of the Perseus Cluster, the Horsehead Nebula, and other astronomical objects.

Now, the telescope has released its first images of its three Deep Fields.

Euclid features a powerful 600 MB camera that can take detailed images of objects like the Horsehead Nebula. However, its main job is to probe the history of the expansion of the Universe.