Toggle light / dark theme

As the Pentagon makes a push toward scaling production of autonomous systems and weapons, Anduril Industries is accelerating its own manufacturing capabilities through a new software-based production hub called Arsenal.

The California-based defense technology company announced Wednesday it will build the first Arsenal facility in the U.S., using funding from a recent $1.5 billion Series F investment round. Chris Brose, Anduril’s chief strategy officer, told reporters the firm’s goal is to consolidate manufacturing in order to “hyperscale” production across its product lines, including uncrewed combat drones and autonomous underwater vehicles.

“When we say hyperscale, we mean the ability to produce tens of thousands of a given system,” he said in a briefing. “This is the target that we’re setting for ourselves right now.”

Metalens is a kind of optical metasurface composed of metaatoms for manipulating incoming light’s amplitude, phase, and polarization. Unlike traditional refractive lenses, metalens can modulate the wavefront from plane to spherical at an interface. It has garnered widespread attention due to its novel physical properties and promising potential applications.

What does the inside of a cell really look like? In the past, standard microscopes were limited in how well they could answer this question. Now, researchers from the Universities of Göttingen and Oxford, in collaboration with the University Medical Center Göttingen (UMG), have succeeded in developing a microscope with resolutions better than five nanometers (five billionths of a meter). This is roughly equivalent to the width of a hair split into 10,000 strands. Their new method was published in Nature Photonics.

“Quantum computing is not going to be just slightly better than the previous computer, it’s going to be a huge step forward,” he said.

His company produces the world’s first dedicated quantum decoder chip, which detects and corrects the errors currently holding the technology back.

Building devices “that live up to the technology’s incredible promise requires a massive step change in scale and reliability, and that requires reliable error correction schemes”, explained John Martinis, former quantum computing lead at Google Quantum AI.