Toggle light / dark theme

Is an American biochemist and cell biologist. She is a professor of biogerontology at the Buck Institute for Research on Aging. She is also a member of the SENS Research Foundation Advisory Board and an adviser at the Lifeboat Foundation. She is co-editor in chief of the Aging Journal, together with Mikhail Blagosklonny and David Sinclair, and founder of the pharmaceutical company Unity Biotechnology. She is listed in Who’s Who in Gerontology.

She is widely known for her research on how senescent cells influence aging and cancer — in particular the senescence-associated secretory phenotype (SASP).

Judy Campisi, The Buck Institute for Research on Aging, presenting at Undoing Aging 2019.

#senolytics #biotech #anti-aging #antiaging #undoingaging #longevity

Movies featuring heroes with superpowers, such as flight, X-ray vision or extraordinary strength, are all the rage. But while these popular characters are mere flights of fancy, scientists have used nanoparticles to confer a real superpower on ordinary mice: the ability to see near-infrared light. Today, scientists report progress in making versions of these nanoparticles that could someday give built-in night vision to humans.

The researchers will present their results at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.

“When we look at the universe, we see only ,” says Gang Han, Ph.D., the project’s principal investigator, who is presenting the work at the meeting. “But if we had near-infrared vision, we could see the universe in a whole new way. We might be able to do infrared astronomy with the , or have without bulky equipment.”

Exceptional longevity: the hunt for associated factors has concentrated on #genomics and biomarkers. What has been missed? Optimism. And it’s dose-dependent.


Researchers from Boston University School of Medicine (BUSM), National Center for PTSD at VA Boston Healthcare System and Harvard T.H. Chan School of Public Health, have found that individuals with greater optimism are more likely to live longer and to achieve “exceptional longevity,” that is, living to age 85 or older.

Optimism refers to a general expectation that good things will happen, or believing that the future will be favorable because we can control important outcomes. Whereas research has identified many that increase the likelihood of diseases and premature death, much less is known about positive psychosocial factors that can promote .

The study was based on 69,744 women and 1,429 men. Both groups completed survey measures to assess their level of optimism, as well as their overall health and such as diet, smoking and alcohol use. Women were followed for 10 years, while the men were followed for 30 years. When individuals were compared based on their initial levels of optimism, the researchers found that the most optimistic men and women demonstrated, on average, an 11 to 15 percent longer lifespan, and had 50–70 percent greater odds of reaching 85 years old compared to the least optimistic groups. The results were maintained after accounting for age, demographic factors such as educational attainment, chronic diseases, depression and also health behaviors, such as alcohol use, exercise, diet and primary care visits.

An international group of scientists studied the effects of 17 different lifespan-extending interventions on gene activity in mice and discovered genetic biomarkers of longevity. The results of their study were published in the journal Cell Metabolism.

Nowadays, dozens of interventions are known that extend the lifespan of various living organisms ranging from yeast to mammals. They include chemical compounds (e.g. rapamycin), genetic interventions (e.g. mutations associated with disruption of growth hormone synthesis), and diets (e.g. caloric restriction). Some targets of these interventions have been discovered. However, there is still no clear understanding of the systemic molecular mechanisms leading to lifespan extension.

A group of scientists from Skoltech, Moscow State University and Harvard University decided to fill this gap and identify crucial molecular processes associated with longevity. To do so, they looked at the effects of various lifespan-extending interventions on the activity of genes in a mouse, a commonly used model organism closely related to humans.

I am going home :3.


Everybody wants a wormhole. I mean, who wants to bother traveling the long-and-slow routes throughout the universe, taking tens of thousands of years just to reach yet another boring star? Not when you can pop into the nearest wormhole opening, take a short stroll, and end up in some exotic far-flung corner of the universe.

There’s a small technical difficulty, though: Wormholes, which are bends in space-time so extreme that a shortcut tunnel forms, are catastrophically unstable. As in, as soon as you send a single photon down the hole, it collapses faster than the speed of light.

A gene called Lipocalin 2 is a major culprit in triple-negative breast cancer, an aggressive form of the disease for which there are few effective, targeted treatments. A team of researchers at Boston Children’s Hospital has developed an innovative way to knock out the gene using the editing system CRISPR and has shown its potential for treating triple-negative breast tumors in mice.

But to make CRISPR work in breast tumors, the researchers had to figure out a way to deliver the technology into breast cancer cells without using a virus or something else that might cause off-target side effects. So they encapsulated it in nanoparticles and targeted it at ICAM-1, a molecule expressed on breast cancer cells.

The encapsulated CRISPR system knocked out Lipocalin 2 with 81% efficiency in tumor samples, and when injected into mouse models of triple-negative breast cancer, it slowed tumor growth by 77%. The researchers reported the results in the journal Proceedings of the National Academy of Sciences.

In February, an artificial intelligence lab cofounded by Elon Musk informed the world that its latest breakthrough was too risky to release to the public. OpenAI claimed it had made language software so fluent at generating text that it might be adapted to crank out fake news or spam.

On Thursday, two recent master’s graduates in computer science released what they say is a re-creation of OpenAI’s withheld software onto the internet for anyone to download and use.

Aaron Gokaslan, 23, and Vanya Cohen, 24, say they aren’t out to cause havoc and don’t believe such software poses much risk to society yet. The pair say their release was intended to show that you don’t have to be an elite lab rich in dollars and PhDs to create this kind of software: They used an estimated $50,000 worth of free cloud computing from Google, which hands out credits to academic institutions. And they argue that setting their creation free can help others explore and prepare for future advances—good or bad.

The journal club will be returning on 27th August with your host Dr. Oliver Medvedik and special guest Alexander Tyshkovskiy, a Ph.D. student who works at the Gladyshev Lab at Brigham and Women’s Hospital, Harvard Medical School, Boston. The topic for the journal club this month will be the recent paper, “Identification and Application of Gene Expression Signatures Associated with Lifespan Extension” published in Cell Metabolism. This study is Alexander Tyshkovskiys project and forms part of his Ph.D. so we are fortunate to have him joining us on the show to talk us through this fascinating study.

Sci-Hub link here: https://sci-hub.tw/https://www.sciencedirect.com/science/art…3119303729