Toggle light / dark theme

According to MIT professor Seth Lloyd, the answer is yes. We could be living in the kind of digital world depicted in The Matrix, and not even know it.

A researcher in Mechanical Engineering at MIT, Lloyd is one of the leaders in the field of quantum information. He’s been with the field from its very conception to its sky-rocketing rise to popularity. Decades ago, the feasibility of developing quantum computing devices was challenged. Now, as quantum computation is producing actual technologies, we are only left to wonder—what kind of applications will it provide us with next?

But, first things first. In a round-table discussion with undergraduates, Lloyd speaks of his early days in the field with a touch of humor, irony, and most surprisingly—pride. When he just started to research quantum information in graduate school, most scientists told him to look into other areas. In fact, out of the postdoctoral programs he considered, not many were too invested in researching of information in quantum mechanics. Most universities and institutes were reluctant to take up quantum computing, but Murray Gell-Mann accepted Lloyd for a position at the California Institute of Technology. This is where many ideas behind quantum computation were born, and Lloyd is “excited by the popularity of the field today.”

On a recent afternoon at the Johnson Space Center, Bill Paloski, Ph.D., Director of NASA’s Human Research Program (HRP), commented on HRP’s mission to protect the health and safety of astronauts. He reflected on some of the human hazards of space, including radiation, isolation and confinement, distance from Earth, altered gravity, and hostile/closed environments.

“We still have a lot to learn about these hazards,” says Paloski. “For instance, how long does it take for space radiation to damage the human body? When you’re isolated, and can’t get home or talk to your family, how long can you stay positive? NASA’s Human Research Program exists to ensure the safety of brave people who are navigating unfamiliar territory in very stressful conditions. We need this program and its research teams to develop strategies to protect our explorers and pioneers who represent the front line of our nation’s space program.”

Paloski’s dedication to improving the lives of this “front line” has provided benefit to other sectors of the federal government, including those who serve the nation in high-risk missions and those in our military services. In recognition of these benefits, Paloski recently received the prestigious Robert M. Yerkes Award for significant contributions to military psychology by a non-psychologist.

In the face of fear, whether it be caused by a grizzly bear or an audience waiting to hear you speak, your body initiates a reaction to stress. The breath quickens, the pupils dilate, the heart begins to pound. These automatic responses occur as a part of the so-called fight-or-flight response, the body’s evolved mechanism to threats around us. Scientists have known for decades that this reaction is triggered by hormones released by the adrenal glands, two cone-shaped organs…


A protein released from bone is involved in triggering the body’s reaction to stress.

TOKYO (Reuters) — Inspired by new ultra-thin solar panels developed for satellites, a project led by Toyota Motor Corp is experimenting with a sun-powered Prius that it hopes will one day require no plugging in.

In the Japanese government-funded demonstration project, Toyota engineers fitted solar panels designed by Sharp Corp to the hood, roof, rear window and spoiler to see how much juice the sun can generate.

The electricity from the panels goes directly to the drive battery, so the Prius can charge while moving or when parked.

We’re continuing to release talks from Ending Age-Related Diseases 2019, our highly successful two-day conference that featured talks from leading researchers and investors, bringing them together to discuss the future of aging and rejuvenation biotechnology.

In his talk, The Reversal of the Aging of Human Cells: Strategies for Clinical Implementation, Dr. West discussed the differences between germ-line and somatic cells, embryonic regeneration in humans, organisms that do not age, the Weismann Barrier, the ways in which cellular immortality is repressed in human beings (somatic restriction), cellular reprogramming, and how AgeX is attempting to create stem cell populations for regenerative therapies.