1-min C-SPAN video of why I’m running for President in 2020 against Donald Trump: https://www.facebook.com/ZoltanGIstvan/videos/208920663626290/ #UpgradingAmerica #Zoltan2020
1-min C-SPAN video of why I’m running for President in 2020 against Donald Trump: https://www.facebook.com/ZoltanGIstvan/videos/208920663626290/ #UpgradingAmerica #Zoltan2020
O.o!
The first sequenced genome was that of the 3569-nucleotide single-stranded RNA (ssRNA) bacteriophage MS2. Despite the recent accumulation of vast amounts of DNA and RNA sequence data, only 12 representative ssRNA phage genome sequences are available from the NCBI Genome database (June 2019). The difficulty in detecting RNA phages in metagenomic datasets raises questions as to their abundance, taxonomic structure, and ecological importance. In this study, we iteratively applied profile hidden Markov models to detect conserved ssRNA phage proteins in 82 publicly available metatranscriptomic datasets generated from activated sludge and aquatic environments. We identified 15,611 nonredundant ssRNA phage sequences, including 1015 near-complete genomes. This expansion in the number of known sequences enabled us to complete a phylogenetic assessment of both sequences identified in this study and known ssRNA phage genomes. Our expansion of these viruses from two environments suggests that they have been overlooked within microbiome studies.
Viruses, particularly bacteriophages targeting prokaryotes, are the most diverse biological entities in the biosphere (1, 2). Currently, there are 11,489 genome sequences available in the NCBI (National Center for Biotechnology Information) Viral RefSeq database (version 94). The vast majority of known phage have a double-stranded DNA (dsDNA) genome (3, 4). Recent metagenomic analysis of 145 marine virome sampling sites identified 195,728 DNA viral populations, highlighting that only a fraction of Earth’s viral diversity has been characterized (5). An additional expansion of known phage populations by Roux et al. (6) revealed that not only dsDNA phages but also single-stranded DNA Inoviridae are far more diverse than previously considered. The rapid expansion in viral discovery through metagenomics is enabling a greater understanding of their roles within environments and their evolutionary relationships, which is subsequently causing a revolution in phage taxonomy (7).
Despite the identification of single-stranded RNA (ssRNA) phages over 50 years ago (8), there are few representative sequences available. The International Committee on Taxonomy of Viruses (ICTV) has currently categorized approximately 5500 viruses (9). Yet, their classification only applies to 25 ssRNA phage sequences (complete or partial) across two genera, Levivirus and Allolevivirus, and an additional 32 sequences unclassified below a family taxonomic rank (10). Historically, methods for classifying Leviviridae depended on molecular weight, density, sedimentation, and serological cross-reactivity (11). A subsequent classification method separated the two genera, with the Alloleviviruses containing a fourth unique gene predicted to encode a lysin (12). Recently, an analysis of the evolution origin of all currently known RNA viruses by Wolf et al. (13) suggested that ssRNA phages may actually be two distinct lineages, which they termed Leviviridae and “Levi-like” viruses.
O.o!
From the office of the governor:
Salem, OR—Governor Kate Brown today declared a state of emergency in three Oregon counties due to severe flooding, increased snowmelt, landslides, and erosion. This declaration comes at the request of local legislators and is based on the recommendations of the Oregon Office of Emergency Management (OEM).
“Fast-moving, severe floods have required the evacuation of residences and shut down critical roads in northeastern Oregon. I am grateful for all of our first responders for their efforts to keep our families safe since the waters began rising,” Governor Brown said. “This emergency declaration ensures state resources, emergency response personnel, and equipment can be activated to complement critical local resources as this situation progresses.”
O.o probs alien o.o circa 2013.
Remember when encyclopaedias were books, and not just websites? You’d have a shelf full of information, packaged into entries, and then into separate volumes. Your genome is organised in a similar way. Your DNA is packaged into large volumes called chromosomes. There are 23 pairs of them, each of which contains a long string of genes. And just as encyclopaedia books are bound in sturdy covers to prevent the pages within from fraying, so too are your chromosomes capped by protective structures called telomeres.
That’s basically how it works in any animal or plant or fungus. The number of chromosomes might vary a lot—fruit flies have 8 while dogs have 78—but the basic organisation is the same.
But there’s a pond-dwelling creature called Oxytricha trifallax whose DNA is organised in a very… different… way. A team of US scientists has sequenced its genome for the first time and discovered genetic chaos. It’s like someone has taken the encyclopaedias, ripped out all the individual pages, torn some of them, photocopied everything dozens of times, and stuffed the whole lot in a gigantic messy drawer.
Researchers-genetically-alter-the-immune-system-of-cancer-patients-without-side-effect.
US scientists have succeeded in genetically editing the immune systems of three cancer patients using CRISPR, without creating any side effects, a first for the tool which is revolutionizing biomedical research.
The highly anticipated results from the first phase of a clinical trial were published in the journal Science on Thursday.
They represent a stepping stone that doesn’t yet prove CRISPR can be used to fight cancer. Indeed, one of the patients has since died and the disease has worsened in the other two — but the trial does show that the technique is non-toxic.
Circa 2016 o.o
Americans dump 251 million tons of trash annually into landfills. Bike seat ripped? Toss it. Hole in the old garden hose? Get rid of it. Spandex not tucking in your tummy? Loose it and replace it. This linear process of extracting a resource, processing it, selling it than discarding it is creating a mound of trash dangerously equivocal to the ball of trash in Futurama episode 8 season 1.
Why Plastic Sucks
Bike seats, garden hoses and spandex are all comprised of polyurethane, the most common and environmentally destructive plastic. The Newsweek article, Plastic-Eating Fungi That Could Solve Our Garbage Problem, notes that the only way to get rid of polyurethane is incarceration, which releases harmful gases into our ecosystem. If plastic is left abandoned in the landfill or ocean, Ultraviolet light from the sun or waves break down the material into harmful microplastic particles. In the ocean, this broken down plastic first poisons the marine life then the people who consumed it. The process of breaking down such materials in landfills emits methane, a green house gas 23 times more potent than CO2, according to the Modern Farm article, Plastic-Eating Mushrooms Could Save the World. Additionally, per the Newsweek article, David Schwatzman, Proffessor of Biology at Howard University remarks,” Landfills are sources of serious problems.
O.o!
Some 4,000 years ago, a tiny population of woolly mammoths died out on Wrangel Island, a remote Arctic refuge off the coast of Siberia.
They may have been the last of their kind anywhere on Earth.
To learn about the plight of these giant creatures and the forces that contributed to their extinction, scientists have resurrected a Wrangel Island mammoth’s mutated genes. The goal of the project was to study whether the genes functioned normally. They did not.
Sharks are at the top of the marine food chain for a reason. Their massive size along with a dazzling row of extra-sharp teeth make them the fiercest hunters in our oceans. But it turns out that the shark’s aquatic dominance reaches down into its very DNA, and through its mutations, sharks could teach us how to fight our most deadly affliction—cancer.
This isn’t the first evidence that mutations can prove beneficial for disease resistance and long-term survival. High bone density, a hemoglobin that boosts malaria resistance, and a third retinal cone that improves color vision are some human examples. But new gene mapping conducted by scientists at the Save Our Seas Foundation Shark Research Center at Florida’s Nova Southeastern University, the Guy Harvey Research Institute, and the Cornell University College of Veterinary Medicine shows that sharks have developed genomic adaptations that repair damaged DNA, effectively protecting them against cancer and other diseases.
O.o!
The epic collision between two neutron stars in 2017 really is the science gift that keeps on giving. As they merged, gravitational waves rippled out across the Universe; now reverberations from that event could confirm a decades-old hypothesis about black holes.
Astronomers poring over the gravitational wave data believe they have found evidence of echoes — something that would only occur in the presence of the ‘quantum fuzz’ produced by Hawking radiation.
“According to Einstein’s theory of general relativity, nothing can escape from the gravity of a black hole once it has passed a point of no return, known as the event horizon,” said astronomer and physicist Niayesh Afshordi of the University of Waterloo in Canada.