Toggle light / dark theme

Genetic differences in the immune system shape the collections of bacteria that colonize the digestive system, according to new research by scientists at the University of Chicago.

In carefully controlled experiments using populated with microbes from conventionally raised mice, the researchers showed that while the makeup of the microbial input largely determined the resulting of the recipients, between strains of mice played a role as well.

“When the input is standardized, you can compare mice of different genetic strains and see what these genetics do to the microbiome in recipient mice,” said microbiome researcher Alexander Chervonsky, MD, Ph.D., a senior author of the new study, published in Cell Reports. “This approach allowed us to tell whether there was a genetic influence, and indeed there is. So, the next question was what mechanisms are involved?”

As investors await results from the first U.S. clinical trials of the gene-editing system known as Crispr, scientists are focused on finding ways to administer it directly into humans, according to the technology’s co-inventor, Jennifer Doudna.

Right now, in studies using Crispr that have treated patients, researchers have had to extract their cells to be able to make edits to faulty DNA before infusing them back into the body for treatment. Being able to do precise edits directly inside humans, animals or plants could open the door to new applications, Doudna said.

Squids, octopuses, cuttlefish, amphibians, and chameleon lizards are among the animals that can change the color of their skin in a blink of an eye. They have photoreceptors in their skin that operate independently of their brain. The photoreceptors are part of a family of proteins known as opsins.

Mammals have opsins, too. They are the most abundant proteins in the retina. These light-sensing photopigments are responsible for color vision (cone opsins) and vision in (rhodopsin). While previous studies have suggested that mammals might express proteins outside the eye, there was little information on what functions they might influence.

A study published Oct. 10 in Current Biology has now found that a type of opsin known as neuropsin is expressed in the hair follicles of mice and synchronize the skin’s to the light-dark cycle, independent of the eyes or brain.

Outfield Technologies is a Cambridge-based agri-tech start-up company which uses drones and artificial intelligence, to help fruit growers maximise their harvest from orchard crops.

Outfield Technologies’ founders Jim McDougall and Oli Hilbourne have been working with Ph.D. student Tom Roddick from the Department’s Machine Intelligence Laboratory to develop their technology capabilities to be able to count the blossoms and apples on a tree via drones surveying enormous orchards.

“An accurate assessment of the blossom or estimation of the harvest allows growers to be more productive, sustainable and environmentally friendly”, explains Outfield’s commercial director Jim McDougall.

Listen to The A Level Biologist Podcasts episodes free, on demand. As we enter the golden age of life science we should not just keep getting sick and dying. Too much to ask for?Learn more about Aubrey and SRF at https://www.sens.orgFull transcript: https://thealevelbiologist.co.uk/indefinite-health-with-dr-aubrey-de-grey/The A Level Biologist Podcasts is brought to you by The A Level Biologist — Your Hub @ https://thealevelbiologist.co.ukSupport the show. The easiest way to listen to podcasts on your iPhone, iPad, Android, PC, smart speaker – and even in your car. For free. Bonus and ad-free content available with Stitcher Premium.

A chance finding 10 years ago led to the creation by researchers of the Spanish National Cancer Research Centre (CNIO) of the first mice born with much longer telomeres than normal in their species. Telomeres shorten throughout life, so older organisms have shorter telomeres. Given this relationship between telomeres and aging, the scientists launched a study generating mice in which 100 percent of their cells had hyper-long telomeres. The findings are published in Nature Communications and show only positive consequences: The animals with hyper-long telomeres live longer and in better health, free from cancer and obesity. This marks the first time that longevity has been significantly increased without any genetic modification.

“This finding supports the idea that, when it comes to determining longevity, genes are not the only thing to consider,” says Maria Blasco, head of the CNIO Telomeres and Telomerase Group and intellectual author of the paper. “There is margin for extending life without altering the genes.”

Telomeres form the ends of chromosomes in the nucleus of each cell in the body. Their function is to protect the integrity of the genetic information in DNA. Whenever the cells divide the telomeres, they are slightly shortened, so one of the main characteristics of aging is the accumulation of in cells. “Telomere shortening is considered to be one of the primary causes of aging, given that short telomeres cause aging of the organism and reduce longevity,” the authors write in a paper published in Nature Communications.