Toggle light / dark theme

“Asteroids are leftovers from the planetary formation process, so their compositions vary depending on where they formed in the solar nebula,” said Dr. Anicia Arredondo. “Hydration that is endogenous could suggest that Psyche is not the remnant core of a protoplanet.”


Could a metallic asteroid contain water and what can this teach us about the asteroid’s formation and evolution? This is what a recent study due for publication in the Planetary Science Journal hopes to address as a team of researchers led by the Southwest Research Institute (SwRI) investigated whether the metallic asteroid Psyche —which is one of the largest objects in the main asteroid belt—could contain evidence of water and hydration.

This study holds the potential to help scientists better understand the formation and evolution of asteroids and what this can teach us about the history of the solar system. This study also comes as NASA’s Psyche spacecraft is currently en route to the Psyche asteroid and is scheduled to arrive in August 2029.

For the study, the researchers used NASA’s powerful James Webb Space Telescope to observe the 140-mile diameter asteroid, which detected evidence of what are known as hydroxyl molecules, or molecules containing bonded hydrogen and oxygen, and specifically identified traces of water, more commonly known as H2O in its molecular form. Now, the question arises as to if the water got there from exogenous (external) or endogenous (internal) processes.

“This is going to be the fastest AI computer ever launched to space,” Yanni Barghouty, CSC’s cofounder and CEO, told Space.com. “The goal of this mission is simply to demonstrate the successful operation of an AI-capable Nvidia GPU on orbit with minimal to no errors while operating.”

The GPU will fly aboard a cubesat built by San Francisco-based company Aethero, a maker of high-performance, space-rated computers. The GPU’s only task during its four-month orbital mission will be to make mathematical calculations, the results of which will be beamed to Earth and carefully checked.

Even the best AI large language models (LLMs) fail dramatically when it comes to simple logical questions. This is the conclusion of researchers from the Jülich Supercomputing Center (JSC), the School of Electrical and Electronic Engineering at the University of Bristol and the LAION AI laboratory.

In their paper posted to the arXiv preprint server, titled “Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models,” the scientists attest to a “dramatic breakdown of function and reasoning capabilities” in the tested state-of-the-art LLMs and suggest that although language models have the latent ability to perform basic reasoning, they cannot access it robustly and consistently.

The authors of the study—Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti and Jenia Jitsev—call on “the scientific and technological community to stimulate urgent re-assessment of the claimed capabilities of the current generation of LLMs.” They also call for the development of standardized benchmarks to uncover weaknesses in language models related to basic reasoning capabilities, as current tests have apparently failed to reveal this serious failure.

Grok-2 is our frontier language model with state-of-the-art reasoning capabilities. This release includes two members of the Grok family: and mini. Both models are now being released to Grok users on the platform.

For the first time in human history, there are now 10,000 functioning satellites above our heads, whipping around the Earth at high speed. It’s a milestone that showcases decades of technical achievement but might also make it harder to sleep at night if you think about it for too long.

The count comes from the latest estimate by Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics and leading watcher of most things orbital. McDowell estimates there are 10,036 active satellites in orbit as of July 18.

Remarkably, this figure has roughly quadrupled over just the past half-decade, thanks almost entirely to Elon Musk, SpaceX and their massive Starlink constellation of broadband routers in low-earth orbit.

NASA’s LEGS can do more than help Earthlings move about the planet. Three Lunar Exploration Ground Sites, or LEGS, will enhance the Near Space Network’s communications services and support of NASA’s Artemis campaign.

NASA’s Space Communications and Navigation (SCaN) program maintains the agency’s two primary communications networks—the Deep Space Network and the Near Space Network, which enable satellites in space to send data back to Earth for investigation and discovery.

Using antennas around the globe, these networks capture signals from satellites, collecting data and enabling navigation engineers to track the mission. For the first Artemis mission, these networks worked in tandem to support the mission as it completed its 25-day journey around the moon. They will do the same for the upcoming Artemis II mission.