Toggle light / dark theme

New research, led by scientists from the University of Rochester, has homed in on a mechanism responsible for causing the cognitive impairment seen in patients who receive cranial radiotherapy for brain cancer. This new understanding is hoped to lead to the development of novel ways to protect the brain from damage in the course of receiving life-saving cancer treatment.

Nearly 25,000 people in the United States are diagnosed with brain tumors every year, and many will undergo radiotherapy as a vital part of the treatment process. Sadly, more than 80 percent of patients administered a form of treatment known as whole-brain radiation therapy go on to develop permanent signs of cognitive impairment.

Prior research has discovered radiation delivered to the brain in the course of a cancer treatment seems to activate a brain immune cell known as microglia. Overactive microglia can damage healthy brains by destroying the synapses that connect neurons.

The surface of the Sun is never still. Upon this burning ball of gas, a continual flow of super-hot plasma creates ropes of magnetic fields that can twist and tangle with one another.

As the star rotates, these invisible lines snap apart and join together again, bursting into flares, storms and eruptions of plasma.

This phenomenon, known as magnetic reconnection, has been seen many times before on the Sun and even around our own planet, but we’ve only captured spontaneous reconnections in the past.

Given that opportunity, the acquisition of Habana is only a component of a wide attack on the market and that it’s not clear how it fits with the other acquisitions and projects, the initial response to the Habana acquisition should be a shrug. Intel is like a VC firm in that it only needs one of the multiple initiatives to hit in order to end up in the black.

Infrared cameras detect people and other objects by the heat they emit. Now, researchers have discovered the uncanny ability of a material to hide a target by masking its telltale heat properties.

The effect works for a range of temperatures that one day could include humans and vehicles, presenting a future asset to stealth technologies, the researchers say.

What makes the material special is its quantum nature—properties that are unexplainable by classical physics. The study, published today in the Proceedings of the National Academy of Sciences, is one step closer to unlocking the quantum material’s full potential.