Menu

Blog

Page 8517

Oct 4, 2018

Scarlet Protein Might Protect Against Parkinson’s Disease

Posted by in categories: biotech/medical, neuroscience

Scarlet protein has a protective effect against Parkinson’s disease in fruit flies.


Researchers at the Department of Biological Sciences at Lehigh University in Bethlehem, Pennsylvania, discovered that a protein known as Scarlet has protective effects against the fruit fly version of Parkinson’s disease [1].

Abstract

Continue reading “Scarlet Protein Might Protect Against Parkinson’s Disease” »

Oct 4, 2018

Flowing salt water over this super-hydrophobic surface can generate electricity

Posted by in categories: energy, engineering, sustainability

Engineers at the University of California San Diego have developed a super-hydrophobic surface that can be used to generate electrical voltage. When salt water flows over this specially patterned surface, it can produce at least 50 millivolts. The proof-of-concept work could lead to the development of new power sources for lab-on-a-chip platforms and other microfluidics devices. It could someday be extended to energy harvesting methods in water desalination plants, researchers said.

A team of researchers led by Prab Bandaru, a professor of mechanical and aerospace engineering at the UC San Diego Jacobs School of Engineering, and first author Bei Fan, a graduate student in Bandaru’s research group, published their work in the Oct. 3 issue of Nature Communications.

The main idea behind this work is to create electrical by moving ions over a charged . And the faster you can move these ions, the more voltage you can generate, explained Bandaru.

Continue reading “Flowing salt water over this super-hydrophobic surface can generate electricity” »

Oct 4, 2018

Quantum machine learning is a big leap away, at least for now

Posted by in categories: information science, quantum physics, robotics/AI

Quantum computing isn’t going to revolutionize AI anytime soon, according to a panel of experts in both fields.

Different worlds: Yoshua Bengio, one of the fathers of deep learning, joined quantum computing experts from IBM and MIT for a panel discussion yesterday. Participants included Peter Shor, the man behind the most famous quantum algorithm. Bengio said he was keen to explore new computer designs, and he peppered his co-panelists with questions about what a quantum computer might be capable of.

Quantum leaps: The panels quantum experts explained that while quantum computers are scaling up, it will be a while—we’re talking years here—before they could do any useful machine learning, partly because a lot of extra qubits will be needed to do the necessary error corrections. To complicate things further, it isn’t very clear what, exactly, quantum computers will be able to do better than their classical counterparts. But both Aram Harrow of MIT and IBM’s Kristian Temme said that early research on quantum machine learning is under way.

Continue reading “Quantum machine learning is a big leap away, at least for now” »

Oct 4, 2018

New fuel cell concept brings biological design to better electricity generation

Posted by in categories: biological, materials

Fuel cells have long been viewed as a promising power source. These devices, invented in the 1830s, generate electricity directly from chemicals, such as hydrogen and oxygen, and produce only water vapor as emissions. But most fuel cells are too expensive, inefficient, or both.

In a new approach, inspired by biology and published today (Oct. 3, 2018) in the journal Joule, a University of Wisconsin-Madison team has designed a fuel cell using cheaper materials and an organic compound that shuttles electrons and protons.

In a traditional fuel cell, the electrons and protons from hydrogen are transported from one electrode to another, where they combine with oxygen to produce water. This process converts chemical energy into electricity. To generate a meaningful amount of charge in a short enough amount of time, a catalyst is needed to accelerate the reactions.

Continue reading “New fuel cell concept brings biological design to better electricity generation” »

Oct 4, 2018

Fisetin Found in Strawberries Clears Senescent Cells in Mice

Posted by in categories: biotech/medical, life extension

Today, we want to bring your attention to a recent mouse study on fisetin, a commonly available supplement that has proven effective at destroying senescent cells.

What are senescent cells?

As we age, increasing amounts of our cells enter into a state known as senescence. Normally, these cells destroy themselves by a self-destruct process known as apoptosis and are disposed of by the immune system. Unfortunately, as we age, the immune system declines, and increasing numbers of senescent cells escape apoptosis and accumulate in the body.

Read more

Oct 4, 2018

Model helps robots navigate more like humans do

Posted by in categories: information science, robotics/AI

When moving through a crowd to reach some end goal, humans can usually navigate the space safely without thinking too much. They can learn from the behavior of others and note any obstacles to avoid. Robots, on the other hand, struggle with such navigational concepts.

MIT researchers have now devised a way to help robots navigate environments more like humans do. Their novel motion-planning model lets robots determine how to reach a goal by exploring the environment, observing other agents, and exploiting what they’ve learned before in similar situations. A paper describing the model was presented at this week’s IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Popular motion-planning algorithms will create a tree of possible decisions that branches out until it finds good paths for navigation. A that needs to navigate a room to reach a door, for instance, will create a step-by-step search tree of possible movements and then execute the best path to the door, considering various constraints. One drawback, however, is these algorithms rarely learn: Robots can’t leverage information about how they or other agents acted previously in similar environments.

Read more

Oct 4, 2018

Artificial enzymes convert solar energy into hydrogen gas

Posted by in categories: bioengineering, biological, chemistry, genetics, solar power, sustainability

In a new scientific article, researchers at Uppsala University describe how, using a completely new method, they have synthesised an artificial enzyme that functions in the metabolism of living cells. These enzymes can utilize the cell’s own energy, and thereby enable hydrogen gas to be produced from solar energy.

Hydrogen gas has long been noted as a promising carrier, but its production is still dependent on fossil raw materials. Renewable gas can be extracted from water, but as yet the systems for doing so have limitations.

In the new article, published in the journal Energy and Environmental Science, an interdisciplinary European research group led by Uppsala University scientists describe how convert into hydrogen gas. This entirely new method has been developed at the University in the past few years. The technique is based on photosynthetic microorganisms with genetically inserted enzymes that are combined with synthetic compounds produced in the laboratory. Synthetic biology has been combined with synthetic chemistry to design and create custom artificial enzymes inside living organisms.

Continue reading “Artificial enzymes convert solar energy into hydrogen gas” »

Oct 4, 2018

Researchers have discovered how to slow aging

Posted by in categories: food, life extension

Previous research published earlier this year in Nature Medicine involving University of Minnesota Medical School faculty Paul D. Robbins and Laura J. Niedernhofer and Mayo Clinic investigators James L. Kirkland and Tamara Tchkonia, showed it was possible to reduce the burden of damaged cells, termed senescent cells, and extend lifespan and improve health, even when treatment was initiated late in life. They now have shown that treatment of aged mice with the natural product Fisetin, found in many fruits and vegetables, also has significant positive effects on health and lifespan.

Read more

Oct 4, 2018

Deep Space Exploration Could Permanently Damage Human GI Tracts

Posted by in categories: biotech/medical, space travel

Humans aren’t built for deep space exploration. We’ve evolved to live here on Earth with an atmosphere, gravity, and a vitally important magnetic field that deflects high-energy cosmic radiation. It will take all our technological prowess to expand on to other worlds, and it won’t simply be a matter of physically getting there. We also need to preserve delicate human biology. A new study from Georgetown University and NASA suggests it may be much harder than we thought to ensure astronauts maintain healthy gastrointestinal (GI) tract tissue in space.

While doctors expect long-term exposure to high-energy radiation will have myriad effects, it’s difficult to study them in a lab on Earth. The effects of the GI tract are easier to assess because the cells lining this body system are replaced every few days. New cells migrate upward from a structure called a “crypt” to take their places lining the gut. Any disturbance of this mechanism can lead to dysfunction.

The study assessed mice under exposure to different radiation conditions as an analog for humans. They’re much smaller, so they can’t handle as much radiation has a human. However, their GI tracts respond much like ours would from exposure to high-energy particles. The researchers used the NASA Space Radiation Laboratory (NSRL) in Brookhaven National Laboratory to bombard the mice with either simulated galactic cosmic radiation (sometimes called cosmic rays), gamma rays, or no radiation (control group).

Continue reading “Deep Space Exploration Could Permanently Damage Human GI Tracts” »

Oct 4, 2018

Robot masters human balancing act

Posted by in categories: information science, mathematics, robotics/AI, space

By translating a key human physical dynamic skill — maintaining whole-body balance — into a mathematical equation, the team was able to use the numerical formula to program their robot Mercury, which was built and tested over the course of six years. They calculated the margin of error necessary for the average person to lose one’s balance and fall when walking to be a simple figure — 2 centimeters.

“Essentially, we have developed a technique to teach autonomous robots how to maintain balance even when they are hit unexpectedly, or a force is applied without warning,” Sentis said. “This is a particularly valuable skill we as humans frequently use when navigating through large crowds.”

Sentis said their technique has been successful in dynamically balancing both bipeds without ankle control and full humanoid robots.

Read more