Toggle light / dark theme

There are many satellites in space and we know which launch put most of them up there. But there are a number of them that are not associated with a specific launch, though it would be desirable to identify which put them into orbit. This article is about a technique which could help associate objects in space with particular launches, one that I am currently developing. But let’s start with some background information: what do we know about most satellites?

First, there are several catalogs of satellites. These are lists of satellites and information about them, and are maintained by different organizations. What are these catalogs? I have written a couple of articles that have appeared here that give some background, such as one about overlooked satellites (see “Acknowledging some overlooked satellites”, The Space Review, June 12, 2017), while another discusses why some satellites are in some catalogs and not others (see “Time for common sense with the satellite catalog”, The Space Review, April 10, 2017).

The US Air Force maintains the default world official satellite catalog and assigns official satellite numbers and “international designators,” which state what launch each object is associated with. The Air Force gets observations from many sites, radar and optical, around the world and uses them to generate and maintain orbital parameters for satellites. That is how they know which object is from which launch. That international designator is very important when a satellite reenters: the country that owns a satellite that reenters is responsible for any damage caused when it impacts the ground. Also, for satellite collisions, the country that owns a satellite that “causes” a collision is responsible for damage.

https://www.youtube.com/watch?v=DXo5BVdzZQE&t=1s

If you’re tired of robocalls you might want to consider one of Google’s Pixel phones. On Thursday, Google announced that its Call Screen feature, which automatically blocks known robocallers in Google’s database, is rolling out to all Pixel phones this week. It was previously only available on the newest Pixel 3 and Pixel 4 devices. (The original Pixel phone, which launched in 2016, stopped receiving software updates last year, but Google says it’ll still get Call Screen.)

Robocalls may be driving you nuts. According to the YouMail robocall index, which is compiled from the YouMail app that’s built to also block robocalls, there were 4.7 billion robocalls placed in the U.S. in January 2020, or 1,800 a second and 14.4 calls per person. Some U.S. carriers, like AT&T, Verizon, T-Mobile and Sprint are working in the background to prevent robocalls, too. Though sometimes they still sneak through or only work on certain phones.

And other companies, like Apple, let you automatically send calls that are received from people who aren’t in your address book right to voicemail. But sometimes you miss an important call from someone, like a doctor whose number you might not have saved.

O.o!


A mind-expanding and funny trip to the edge of mathematics

How big is the universe? How many numbers are there? And is infinity + 1 is the same as 1 + infinity? Such questions occur to young children and our greatest minds. And they are all the same question: What is infinity? In Beyond Infinity, Eugenia Cheng takes us on a staggering journey from elemental math to its loftiest abstractions. Along the way, she considers how to use a chessboard to plan a worldwide dinner party, how to make a chicken-sandwich sandwich, and how to create infinite cookies from a finite ball of dough. Beyond Infinity shows how one little symbol holds the biggest idea of all.

O.o.


If you’ve ever seen any Jaws movies, you know not to mess with the great white shark. New research says there is more reason to be in awe of these predators: their DNA makes them resilient to diseases like cancer.

A collaborative research team from Nova Southeastern University, Florida, California State University, Cornell University College of Veterinary Medicine, University of Porto, Portugal and others published their findings in PNAS.

“Decoding the white shark genome is providing science with a new set of keys to unlock lingering mysteries about these feared and misunderstood predators – why sharks have thrived for some 500 million years, longer than almost any vertebrate on earth” said Dr. Salvador Jorgensen, a Senior Research Scientist at the Monterey Bay Aquarium, who co-authored the study.