Toggle light / dark theme

For the past decade, disordered rock salt has been studied as a potential breakthrough cathode material for use in lithium-ion batteries and a key to creating low-cost, high-energy storage for everything from cell phones to electric vehicles to renewable energy storage.

A new MIT study is making sure the material fulfills that promise.

Led by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering, a team of researchers describe a new class of partially disordered rock salt cathode, integrated with polyanions—dubbed disordered rock salt-polyanionic spinel, or DRXPS—that delivers at high voltages with significantly improved cycling stability.

Chinese solar PV giant Trina Solar has successfully begun commercial operations at a new agri-voltaic solar project in Japan that combines solar modules with a yam crop that thrives in the shade.

The agrivoltaic project is only small – just 2.4 MW – and is located in the city of Fukuchiyama in Japan’s northern Kyoto Prefecture, but is a demonstration of the new way of thinking about the use of solar projects and existing farmland.

The Fukuchiyama project is paired with the cultivation of the Japanese yam, also known as ebi-imo, a crop native to the region which thrives in shade.

Using a polymer to make a strong yet springy thin film, scientists led by the Department of Energy’s Oak Ridge National Laboratory are speeding the arrival of next-generation solid-state batteries. This effort advances the development of electric vehicle power enabled by flexible, durable sheets of solid-state electrolytes.

The sheets may allow scalable production of future solid-state batteries with higher energy density electrodes. By separating negative and positive electrodes, they would prevent dangerous electrical shorts while providing high-conduction paths for ion movement.

These achievements foreshadow greater safety, performance and compared to current batteries that use liquid electrolytes, which are flammable, chemically reactive, thermally unstable and prone to leakage.

Researchers at the École Polytechnique Fédérale de Lausanne (EPFL) have developed a revolutionary miniaturized brain-machine interface (MiBMI) that converts brain activity directly into text. This breakthrough technology, housed on silicon chips with a total area of just 8mm², marks a significant advancement in brain-computer interface technology.

The study, published in the IEEE Journal of Solid-State Circuits and presented at the International Solid-State Circuits Conference, highlights a device that could dramatically improve communication for individuals with severe motor impairments.

We present GameNGen, the first game engine powered entirely by a neural model that enables real-time interaction with a complex environment over long trajectories at high quality. GameNGen can interactively simulate the classic game DOOM at over 20 frames per second on a single TPU. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation. GameNGen is trained in two phases: an RL-agent learns to play the game and the training sessions are recorded, and a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations enable stable auto-regressive generation over long trajectories.